Periodical Imaging of Microstructure During Temperature Regulated Electrical Conductivity Measurements of Supercritically Synthesized Polypyrrole

  • Anjali BishtEmail author
  • Rekha Sati
  • Kavita Singhal
  • Sameena Mehtab
  • M. G. H. Zaidi
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


Electrochemically active conducting polymers are an important class of materials for applications in energy storage devices. Herein, we report the synthesis of an electrically conducting polypyrrole (PPY) through ferric chloride initiated chemical oxidative polymerization of pyrrole in presence of supercritical carbon dioxide at 70 and 80 °C. The formation of PPY was ascertained through various analytical methods. Polypyrrole graphite electrodes (PGEs) were fabricated through dispersion of PPY synthesized at 70 and 80 °C into graphite in presence of sulfonated polysulfone binder and named as PGE1 and PGE2, respectively. PGE2 demonstrated better DC conductivity over that of PGE1 with morphology retention up to 35 K. Electrochemical studies reveal superior capacitive performance of PGE2 in KOH electrolyte (97.74 F/g) and reduction in corrosion rate of steel electrode @0.16 mm/y.


  1. 1.
    Q. Meng, K. Cai, Y. Chen, L. Chen, Nano Energy 36, 268–285 (2017)CrossRefGoogle Scholar
  2. 2.
    D. Kopecký, M. Varga, J. Prokeš, M. Vrňata, M. Trchová, J. Kopecká, M. Václavík, Synth. Met. 230, 89–96 (2017)CrossRefGoogle Scholar
  3. 3.
    M.T.F. Rodrigues, F.N. Sayed, H. Gullapalli, P.M. Ajayan, J. Power Sources 381, 107–115 (2018)CrossRefGoogle Scholar
  4. 4.
    R.M. Agrawal, T.S. Wasnik, K.B. Raulkar, G.T. Lamdhade, Int. J. Sci. Res. Sci. Eng. Technol. 4, 1249–1253 (2018)Google Scholar
  5. 5.
    K. Gurunathan, A.V. Murugan, R. Marimuthu, U.P. Mulik, D.P. Amalnerkar, Mater. Chem. Phys. 61, 173–191 (1999)CrossRefGoogle Scholar
  6. 6.
    A. Kassim, Z.B. Basar, H.E. Mahmud, J. Chem. Sci. 114, 155–162 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Mudila, S. Rana, M.G.H. Zaidi, Adv. Mater. Lett. 8, 269–275 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Mudila, S. Rana, M.G. Zaidi, J. Anal. Sci. Technol. 7, 1–11 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, L. Zhan, J. Tian, S. Nie, Z. Ning, Electrochim. Acta 56, 1967–1972 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, Z. Lei, J. Power Sources 229, 72–78 (2013)CrossRefGoogle Scholar
  11. 11.
    M.R. Bengoechea, F.M. Aliev, N.J. Pinto, J. Phys. Condens. Matter 14, 11769 (2002)CrossRefGoogle Scholar
  12. 12.
    C. Basavaraja, Y.M. Choi, H.T. Park, D.S. Huh, J.W. Lee, M. Revanasiddappa, S.C. Raghavendra, S. Khasim, T.K. Vishnuvardhan, Bull. Korean Chem. Soc. 28, 1104–1108 (2007)CrossRefGoogle Scholar
  13. 13.
    F. Barzegar, D.Y. Momodu, O.O. Fashedemi, A. Bello, J.K. Dangbegnon, N. Manyala, RSC Adv. 5, 107482–107487 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Zhu, Y. Xu, J. Wang, J. Lin, X. Sun, S. Mao, Phys. Chem. Chem. Phys. 17, 28666–28673 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Mondal, M. Marandi, J. Kozlova, M. Merisalu, A. Niilisk, V. Sammelselg, J. Chem. Chem. Eng. 8, 786–793 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anjali Bisht
    • 1
    Email author
  • Rekha Sati
    • 1
  • Kavita Singhal
    • 1
  • Sameena Mehtab
    • 1
  • M. G. H. Zaidi
    • 1
  1. 1.Department of Chemistry, College of Basic Sciences and HumanitiesG.B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations