Introduction to Green Nanomaterials

  • Pintu PanditEmail author
  • T. Nadathur Gayatri
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 126)


This chapter presents an introduction to nanomaterials, which can be synthesized by green chemistry, or nano-sized functionally advanced materials which have high-performance applications in energy generation and storage, carbon dioxide fixation, electronic devices and are sustainable in terms of production and application with respect to the environment. Methods in brief of preparation of nanoparticles and nanofibres, advantages of green synthesis, and limitations of nanomaterials are discussed. This chapter also provides information related to recent research work on green nanomaterials and the available methods for their synthesis. It also gives a comprehensive overview of the recent status and suggests future directions for employing green nanomaterials for possible various application mainly in the biotechnology, agriculture and biomedical areas. The sustainability of major natural resources utilized in green nanomaterials’ synthesis is considered.


Green nanomaterial Nanotechnology Sustainability Raw materials 


  1. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121 (Elsevier)CrossRefGoogle Scholar
  2. Ahmed S et al (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28 (Elsevier)CrossRefGoogle Scholar
  3. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11(20):3805–3821 (Royal Society of Chemistry)CrossRefGoogle Scholar
  4. Anandalakshmi K, Venugobal J (2017) Green synthesis and characterization of silver nanoparticles using Vitex negundo (Karu Nochchi) leaf extract and its antibacterial activity. Med Chem 7:218–225Google Scholar
  5. Banerjee P et al (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1(1):3 (Springer)CrossRefGoogle Scholar
  6. Birla SS et al (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179 (Wiley Online Library)CrossRefGoogle Scholar
  7. Chakravarty A et al (2017) Green synthesis of electrospun porous carbon nanofibers from sucrose and doping of Ag nanoparticle with improved electrical and electrochemical properties. ChemistrySelect 2(7):2265–2276 (Wiley Online Library)CrossRefGoogle Scholar
  8. Chandrika UG et al (2006) Hypoglycaemic action of the flavonoid fraction of. Afr J Tradit Complement Altern Med 3(2):42–50CrossRefGoogle Scholar
  9. Chaudhry Q, Castle L, Watkins DR (2010) Nanotechnologies in food. Royal Society of Chemistry LondonGoogle Scholar
  10. Colson P, Henrist C, Cloots R (2013) Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater 2013:21 (Hindawi Publishing Corp)CrossRefGoogle Scholar
  11. Crane JH, Balerdi C, Maguire I (2005) Jackfruit growing in the Florida home landscape. Fact Sheet HS-882, pp 1–10Google Scholar
  12. Das BR (2010) UV radiation protective clothing. Open Text J 3:14–21 (Bentham Science Publishers B. V., P. O. Box 1673 Hilversum 1200 BR The Netherlands)Google Scholar
  13. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Aspects 289(1–3):105–109 (Elsevier)CrossRefGoogle Scholar
  14. El-Newehy MH et al (2018) Green electrospining of hydroxypropyl cellulose nanofibres for drug delivery applications. J Nanosci Nanotechnol 18(2):805–814 (American Scientific Publishers)CrossRefGoogle Scholar
  15. El-Nour KMMA et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140 (Elsevier)CrossRefGoogle Scholar
  16. Fouda MMG (2012) Antibacterial modification of textiles using nanotechnology. In: A search for antibacterial agents. InTechGoogle Scholar
  17. Ghorbani HR (2014) A review of methods for synthesis of Al nanoparticles. Orient J Chem 30(4):1941–1949CrossRefGoogle Scholar
  18. Hamers RJ (2017) Nanomaterials and global sustainability. Acc Chem Res 50(3):633–637 (ACS Publications)CrossRefGoogle Scholar
  19. Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci. ISSN 2277, p 2502Google Scholar
  20. Hassan MM, Wagner MH (2017) Surface modification of natural fibers for reinforced polymer composites. In: Progress in adhesion and adhesives. John Wiley & Sons Inc, pp 1–44Google Scholar
  21. Johnston JH et al (2008) Gold nanoparticles as colourants in high fashion fabrics and textiles 1:712–715Google Scholar
  22. Joshi M et al (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. CSIRGoogle Scholar
  23. Kathirvelu S, D’souza L, Dhurai B (2009) UV protection finishing of textiles using ZnO nanoparticles. CSIRGoogle Scholar
  24. Khalil MMH et al (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139 (Elsevier)CrossRefGoogle Scholar
  25. Khan A et al (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Letters 6(1):21–26 (Springer)CrossRefGoogle Scholar
  26. Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31(7):1105–1109 (Springer)CrossRefGoogle Scholar
  27. Kiumarsi A et al (2017) ‘Extraction of dyes from Delphinium Zalil flowers and dyeing silk yarns. J Text Inst 108(1):66–70 (Taylor & Francis)CrossRefGoogle Scholar
  28. Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881 (Multidisciplinary Digital Publishing Institute)CrossRefGoogle Scholar
  29. Makarov VV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия). Oбщecтвo c oгpaничeннoй oтвeтcтвeннocтью Пapк-мeдиa 6(1(20))Google Scholar
  30. Malik P et al (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart (Hindawi)Google Scholar
  31. Manaia EB et al (2013) Inorganic UV filters. Braz J Pharm Sci 49(2):201–209 (SciELO Brasil)CrossRefGoogle Scholar
  32. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356 (Elsevier)CrossRefGoogle Scholar
  33. Murphy M et al (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:5 (Hindawi Publishing Corp)CrossRefGoogle Scholar
  34. Naahidi S et al (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Controlled Release 166(2):182–194 (Elsevier)CrossRefGoogle Scholar
  35. Pal SL et al (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234Google Scholar
  36. Pandey R et al (2017) Colouration of textiles using roasted peanut skin-an agro processing residue. J Cleaner Prod (Elsevier)Google Scholar
  37. Pandit P et al (2018a) Applications of textile materials using emerging sources and technology: a new perspective. Green Sustain Adv Mater Appl 2:49–83 (John Wiley & Sons, Inc. Hoboken, NJ, USA)CrossRefGoogle Scholar
  38. Pandit P, Gayatri TN, Maiti S (2018b) Green and sustainable textile materials using natural resources. Green Sustain Adv Mater Process Charact 1:213–261 (John Wiley & Sons, Inc. Hoboken, NJ, USA)CrossRefGoogle Scholar
  39. Pandit P, Nadathu GT (2018) Characterization of green and sustainable advanced materials. Green Sustain Adv Mater Process Charact 1:35–66 (John Wiley & Sons, Inc. Hoboken, NJ, USA)CrossRefGoogle Scholar
  40. Pavani KV, Balakrishna K, Cheemarla NK (2011) Biosynthesis of zinc nanoparticles by Aspergillus species. Int J Nanotechnol Appl 5(1):27–36Google Scholar
  41. Pervez MN, Stylios GK (2018) An experimental approach to the synthesis and optimisation of a “Green” Nanofibre. Nanomaterials 8(6) (Multidisciplinary Digital Publishing Institute (MDPI))Google Scholar
  42. Prabhu YT et al (2017) A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21(2):180–185 (Elsevier)CrossRefGoogle Scholar
  43. Prasek J et al (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21(40):15872–15884 (Royal Society of Chemistry)CrossRefGoogle Scholar
  44. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83 (Elsevier)CrossRefGoogle Scholar
  45. Rauwel P et al (2015) Silver nanoparticles: synthesis, properties, and applications. In: Advances in materials science and engineering. HindawiGoogle Scholar
  46. Rivero PJ et al (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):501 (Springer)CrossRefGoogle Scholar
  47. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566 (Elsevier)CrossRefGoogle Scholar
  48. Saravanan D (2007) UV protection textile materials. AUTEX Res J 7(1):53–62Google Scholar
  49. Singh M et al (2012) Natural minerals and cancer. J Appl Pharm Sci 2(04):158–165CrossRefGoogle Scholar
  50. Srikulkit K, Iamsamai C, Dubas ST (2017) Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Metals Mater Miner 16(2)Google Scholar
  51. Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17Google Scholar
  52. Suresh S (2013) Semiconductor nanomaterials, methods and applications: a review. Nanosci Nanotechnol 3(3):62–74 (Scientific & Academic Publishing)Google Scholar
  53. Tang B et al (2011) Using hydroxy carboxylate to synthesize gold nanoparticles in heating and photochemical reactions and their application in textile colouration. Chem Eng J 172(1):601–607 (Elsevier)CrossRefGoogle Scholar
  54. Tang B et al (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51(39):12807–12813 (ACS Publications)CrossRefGoogle Scholar
  55. Tang B et al (2015) Functional application of noble metal nanoparticles in situ synthesized on ramie fibers. Nanoscale Res Lett 10(1):366 (Springer)CrossRefGoogle Scholar
  56. Teli MD et al (2015) Hydrophobic silk fabric using atmospheric pressure plasma. Int J Bioresour Sci 2(1):15 (Renu Publishers)Google Scholar
  57. Teli MD et al (2015) Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma. Fibers Polym 16(11): 2375–2383
  58. Teli MD, Pandit P (2017a) A novel natural source Sterculia foetida fruit shell waste as colorant and ultraviolet protection for linen. J Nat Fibers, 15(3): 337—343 (Taylor & Francis)Google Scholar
  59. Teli MD, Pandit P (2017b) Development of thermally stable and hygienic colored cotton fabric made by treatment with natural coconut shell extract. J Ind Text 48(1):87–118. (SAGE Publications Sage UK: London, England, p. 1528083717725113)Google Scholar
  60. Teli MD, Pandit P (2017c) Multifunctionalised silk using Delonix regia stem shell waste. Fibers Polym 18(9):1679–1690 (Springer)CrossRefGoogle Scholar
  61. Teli MD, Pandit P (2017d) Multifunctionalised silk using Delonix regia stem shell waste. Fibers Polym 18(9):1679–1690.
  62. Teli MD, Pandit P (2017e) Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustain Chem Eng 5(9):8323–8333 (ACS Publications)Google Scholar
  63. Teli MD, Pandit P (2018) Application of Sterculia foetida fruit shell waste biomolecules on silk for aesthetic and wellness properties. Fibers Polym 19(1):41–54.
  64. Teli MD, Pandit P, Basak S (2018) Coconut shell extract imparting multifunction properties to ligno-cellulosic material, J Ind Text 47(6):1261–1290.
  65. Tolle R et al (2007) ‘Lloyd’s of London report on nanotechnology: recent development, risks and opportunities. London, England, United Kingdom, Lloyd’s of London Emerging Risk TeamGoogle Scholar
  66. Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389 (Wiley Online Library)CrossRefGoogle Scholar
  67. Ye W et al (2006) Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. J Appl Polym Sci 102(2):1787–1793 (Wiley Online Library)CrossRefGoogle Scholar
  68. Zhang Z, Decker EA, McClements DJ (2014) Encapsulation, protection, and release of polyunsaturated lipids using biopolymer-based hydrogel particles. Food Res Int 64:520–526 (Elsevier)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Textile DesignNational Institute of Fashion Technology, Ministry of Textiles, Government of IndiaPatnaIndia
  2. 2.Department of Fibres and Textile Processing TechnologyInstitute of Chemical TechnologyMumbaiIndia

Personalised recommendations