Microwave Plasma

  • Hirotaka ToyodaEmail author


Microwave plasma is one of the important plasma sources in industry because of its high-plasma density and low damage to the processing surface. In this chapter, we examine the basic physics of the production of microwave plasma from the discharge breakdown to plasma sustainment, together with various production techniques of microwave plasma from low-pressure surface wave plasma, electron cyclotron plasma to atmospheric pressure microwave plasmas. Recently, a solid-state-based microwave power source has been utilized as the power source of microwave plasmas as an alternative to conventional magnetron-type microwave power supplies. Benefits of the solid-state microwave power for the plasma source are explained by focusing on the controllability of the microwave phase of the solid-state microwave power source.


  1. 1.
    Raizer YP (1991) Gas discharge physics. Springer, Berlin, p 139CrossRefGoogle Scholar
  2. 2.
    Liebermann MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York Chapter 10Google Scholar
  3. 3.
    Glaude MM, Moisan M, Pentel R, Leprince P, Marec J (1980) J Appl Phys 51:5693CrossRefGoogle Scholar
  4. 4.
    Moisan M, Shivarova A, Trivelpiece AW (1982) Plasma Phys 24:1331Google Scholar
  5. 5.
    Mateev E, Zhelyazkov I, Atanassov V (1983) J Appl Phys 54:3049CrossRefGoogle Scholar
  6. 6.
    Moisan M, Zakrzewski Z (1992) Microwave excited plasmas. In: Moisan M, Pelletier J (eds) Elsevier, Amsterdam, p 123Google Scholar
  7. 7.
    Ferreira CM, Moisan M (1985) Surface waves in plasmas and solids. In: Vukovic S (ed) World Scientific, Singapore, p 113Google Scholar
  8. 8.
    Moisan M, Ferreira CM, Hubert J, Margot J, Zakrzewski Z (1995) Phenomena in ionized gases. In: Becker KH, Carr WE (eds) AIP Press, Woodbury, p 25Google Scholar
  9. 9.
    Ishijima T, Toyoda H, Takanishi Y, Sugai H (2011) Jpn J Appl Phys 50:36002Google Scholar
  10. 10.
    Ghanashev I, Nagatsu M, Sugai H (1997) Jpn J Appl Phys 36:337CrossRefGoogle Scholar
  11. 11.
    Nagatsu M, Xu G, Ghanashev I, Kanoh M, Sugai H (1997) Plasma Sources Sci Technol 6:427Google Scholar
  12. 12.
    Ghanashev I, Nagatsu M, Xu G, Sugai H (1997) Jpn J Appl Phys 36:4704CrossRefGoogle Scholar
  13. 13.
    Sugai H, Ahn TH, Ghanashev I, Goto M, Nagatsu M, Nakamura K, Suzuki K, Toyoda H (1997) Plasma Phys Controlled Fusion 39:A445CrossRefGoogle Scholar
  14. 14.
    Ishijima T, Nojiri Y, Toyoda H, Sugai H (2010) Jpn J Appl Phys 49:086002CrossRefGoogle Scholar
  15. 15.
    Ishijima T, Toyoda H, Takanishi Y, Sugai H (2011) Jpn J Appl Phys 50:036002Google Scholar
  16. 16.
    Somiya S, Toyoda H, Hotta Y, Sugai H (2004) Jpn J Appl Phys 43:7696CrossRefGoogle Scholar
  17. 17.
    Hotta Y, Toyoda H, Sugai H (2007) Thin Solid Films 515:4983CrossRefGoogle Scholar
  18. 18.
    Takanishi Y, Okayasu T, Toyoda H, Sugai H (2008) Thin Solid Films 516:3554CrossRefGoogle Scholar
  19. 19.
    Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H (1999) Jpn J Appl Phys 38:5256CrossRefGoogle Scholar
  20. 20.
    Ishikawa K, Ishijima T, Sasai K, Toyoda H, Sugai H (2008) Trans Mater Res Soc Jpn 33:683CrossRefGoogle Scholar
  21. 21.
    Takagi Y, Gunjo Y, Toyoda H, Sugai H (2008) Vacuum 83:501CrossRefGoogle Scholar
  22. 22.
    Usami K, Ishijima T, Toyoda H (2012) Thin Solid Films 521:22CrossRefGoogle Scholar
  23. 23.
    Boisse-Laporte C, Leroy O, de Poucques L, Agius B, Bretagne J, Hugon MC, Teulé-Gay L, Touzeau M (2004) Surf Coat Technol 179:176Google Scholar
  24. 24.
    Thiery F, Pauleau Y, Ortega L (2004) J Vac Sci Technol A22:30CrossRefGoogle Scholar
  25. 25.
    Musil J, Mišina M, Hovorka D (1997) J Vac Sci Technol A15:1999CrossRefGoogle Scholar
  26. 26.
    de Poucquesa L, Imberta JC, Vasinab P, Boisse-Laportea C, Teulé-Gay L, Bretagnea J, Touzeaua M (2005) Surf Coat Technol 200:800Google Scholar
  27. 27.
    Sasai K, Hagihara T, Noda T, Suzuki H, Toyoda H (2016) Jpn J Appl Phys 55:086202CrossRefGoogle Scholar
  28. 28.
    Hasegawa Y, Nakamura K, Lubomirsky D, Park S, Kobayashi S, Sugai H (2017) Jpn. J Appl Phys 56:046203CrossRefGoogle Scholar
  29. 29.
    Hottta M, Hasegawa Y, Nakamura K, Kubomirsky D, Park S, Kobayashi S, Sugai J (2017) Jpn J Appl Phys 56:116002 bGoogle Scholar
  30. 30.
    Moisan M, Zakrzewski Z, Etemadi R, Rostaing JC (1998) J Appl Phys 83:5691CrossRefGoogle Scholar
  31. 31.
    Mizojiri T, Morimoto Y, Kando M (2007) Jpn J Appl Phys 46:3573CrossRefGoogle Scholar
  32. 32.
    Takamura S, Kando M, Ohno N (2009) J Plasma Fusion Res 8:910Google Scholar
  33. 33.
    Al-Shamma’a AI, Wylie SR, Lucas J, Pau CF (2001) J Phys D 34:2734Google Scholar
  34. 34.
    Iza F, Hopwood JA, Trans IEEE (2003) Plasma Sci 31:782CrossRefGoogle Scholar
  35. 35.
    Hoskinson AR, Gregorio J, Parsons S, Hopwood J (2015) J Appl Phys 117:163301CrossRefGoogle Scholar
  36. 36.
    Kim JH, Terashima K (2005) Appl Phys Lett 86:191504CrossRefGoogle Scholar
  37. 37.
    Schermer S, Bings NH, Bilgic AM, Stonies R, Voges E, Broekaert JAC (2003) Spectrochim Acta, Part B 58:1585CrossRefGoogle Scholar
  38. 38.
    Kono A, Sugiyama T, Goto T, Furuhashi H, Uchida Y (2001) Jpn J Appl Phys 40:L238CrossRefGoogle Scholar
  39. 39.
    Kono A, Wang J, Aramaki M (2006) Thin Solid Films 506–507:444CrossRefGoogle Scholar
  40. 40.
    Itoh H, Kubota Y, Kashiwagi Y, Takeda K, Ishikawa K, Kondo H, Sekine M, Toyoda H, Hori M (2013) J Phys: Conf Ser 441:012019Google Scholar
  41. 41.
    Suzuki H, Nakano S, Itoh H, Sekine M, Hori M, Toyoda H (2015) Appl Phys Express 8:036001CrossRefGoogle Scholar
  42. 42.
    Suzuki H, Nakano S, Itoh H, Sekine M, Hori M, Toyoda H (2016) Jpn J Appl Phys 55:01AH09Google Scholar
  43. 43.
    Suzuki H, Toyoda H (2017) Jpn J Appl Phys 56:116001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of ElectronicsNagoya University Furo-choNagoyaJapan

Personalised recommendations