Advertisement

Data Verification of LiDAR-Derived DEM from Different Interpolation Techniques

  • Noraain Mohamed SarafEmail author
  • Khairun Najwa Kamarolzaman
  • Nurhafiza Md Saad
  • Nafisah Khalid
  • Abdul Rauf Abdul Rasam
  • Ainon Nisa Othman
Conference paper
  • 11 Downloads

Abstract

Sustainable development makes light detection and ranging (LiDAR) as an accurate technology in providing the accurate data sources for deriving digital terrain model (DTM) and digital elevation model (DEM). This study is focusing on accuracy assessment of generated LiDAR DEM based on different interpolation techniques in GIS environment. In the beginning, LiDAR point clouds were used to generate DEM surface based upon three different interpolation methods: (i) inverse distance weighting (IDW), (ii) Kriging and (iii) Spline. Next, 31 ground control points (GCP) from global positioning system (GPS) observation were used to perform accuracy assessment of LiDAR DEM that generate through IDW, Kriging and Spline interpolation techniques. As result, LiDAR data used in this study met the requirement of LiDAR accuracy with root mean square error (RMSE) below 0.3m. The finding reveals that the overall RMSE (x, y) for IDW, Kriging and Spline methods is between 0.0124 and 0.1120 m. Besides, the RMSE (z) for Kriging stated the smallest value of 0.2135 m, followed by Spline with values of 0.2141 m. Concurrently, IDW techniques gave the highest RMSE (z) value with 0.2276 m. In conclusion, Kriging interpolation technique has been proved as the best methods which gave the highest accuracy of LiDAR-derived DEM compared to other interpolation methods.

Keywords

LiDAR Interpolation RMSE 

References

  1. Amante CJ (2012) Accuracy of interpolated bathymetric digital elevation models. Geography Graduate Theses & DiGoogle Scholar
  2. Asal FF (2016) Evaluating the effects of reductions in lidar data on the visual and statistical characteristics of the created digital elevation models, pp 12–19, 2016.  https://doi.org/10.5194/isprsannals-III-2-91-2016
  3. Ashraf I, Hur S, Park Y (2017) An investigation of interpolation techniques to generate 2D intensity image from LIDAR data 3536(c).  https://doi.org/10.1109/ACCESS.2017.2699686
  4. Bater CW, Coops NC (2009) Evaluating error associated with lidar-derived DEM interpolation. Comput Geosci 35:289–300.  https://doi.org/10.1016/j.cageo.2008.09.001CrossRefGoogle Scholar
  5. Brovelli MA, Cannata M (2004) LIDAR data filtering and DTM interpolation within GRASS 8(2):155–174Google Scholar
  6. Darboux F, Huang C (2003) An instantaneous-profile laser scanner to measure soil surface microtopography. Soil Sci Soc Am J 67(1):92.  https://doi.org/10.2136/sssaj2003.9200CrossRefGoogle Scholar
  7. Faux RN, Buffington JM, Whitley MG, Lanigan SH, Roper BB (2009) Use of airborne near-infrared LiDAR for determining channel cross-section characteristics and monitoring aquatic habitat in Pacific northwest rivers: a preliminary analysis. In: PNAMP special publication: remote sensing applications for aquatic resource monitoring. Pacific Northwest Aquatic Monitoring partnership, Cook, WA, pp 43–60Google Scholar
  8. Gallay M, Lloyd CD, McKinley J, Barry L (2013) Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: a case study from the Lake District, England. Comput Geosci 216–227.  https://doi.org/10.1016/j.cageo.2012.08.015
  9. Garófano-Gómez V, Martínez-Capel F, Peredo-Parada M, Marín EJO, Mas RM, Costa RMS, Pinar-Arenas JL (2011) Assessing hydromorphological and floristic patterns along a regulated Mediterranean river: The Serpis River (Spain). Limnetica 30(2):307–328.  https://doi.org/10.1002/rraCrossRefGoogle Scholar
  10. Guo Q, Li W, Yu H, Alvarez O (2010) Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogramm Eng Remote Sens 76(6):701–712.  https://doi.org/10.14358/PERS.76.6.701
  11. Hodgson ME, Jensen J, Raber G, Tullis J, Davis BA, Thompson G, Schuckman K (2005) An evaluation of lidar-derived elevation and terrain slope in leaf-off conditions. Photogramm Eng Remote Sens 71(7):817–823.  https://doi.org/10.14358/pers.71.7.817CrossRefGoogle Scholar
  12. Idris R, Latif ZA, Jaafar J, Rani NM, Yunus F (2012) Quantitative assessment of LiDAR dataset for topographic maps revision. In: International conference on system engineering and technology (ICSET 2012), pp 1–4.  https://doi.org/10.1109/icsengt.2012.6339288
  13. Ikechukwu MN, Ebinne E, Idorenyin U, Raphael NI (2017) Accuracy assessment and comparative analysis of IDW, Spline and Kriging in Spatial interpolation of landform (topography): an experimental study. J Geogr Inf Syst 9:354–371.  https://doi.org/10.4236/jgis.2017.93022CrossRefGoogle Scholar
  14. Ismail Z, Jaafar J (2013) DEM derived from photogrammetric generated DSM using morphological filter. In: Proceedings—2013 IEEE 4th control and system graduate research colloquium, ICSGRC 2013, pp 103–106.  https://doi.org/10.1109/ICSGRC.2013.6653284
  15. Ismail Z, Khanan MFA, Omar FZ, Rahman MZA, Salleh MRM (2016) Evaluating error of lidar derived dem interpolation for vegetation area, XLII(October):3–5.  https://doi.org/10.5194/isprs-archives-XLII-4-W1-141-2016
  16. Liu X, Zhang Z (2007) The effect of LiDAR data density on DEM accuracy. In: International congress on modelling and simulation (MODSIM07), pp 1363–1369. http://eprints.usq.edu.au/3781
  17. Montealegre AL, Lamelas MT, De La Riva J (2015) A comparison of open—source LiDAR filtering algorithms in a mediterranean forest environment. IEEE J Sel Top Appl Earth Obs Remote Sens 8(8):4072–4085.  https://doi.org/10.1109/JSTARS.2015.2436974CrossRefGoogle Scholar
  18. Rizeei HM, Pradhan B (2018) Extraction and accuracy assessment of DTMs derived from remotely sensed and field surveying approaches in GIS framework. In: IOP conference series: earth and environmental science, vol 169Google Scholar
  19. Stereńczak K, Ciesielski M, Bałazy R, Zawiła-Niedźwiecki T (2016) Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. Eur J Remote Sens 49:599–621.  https://doi.org/10.5721/EuJRS20164932CrossRefGoogle Scholar
  20. Szypuła B (2016) Geomorphometric comparison of DEMs built by different interpolation methods. Landf Anal 32:45–58.  https://doi.org/10.12657/landfana.032.004
  21. Tan Q, Xu X (2014) comparative analysis of spatial interpolation methods. Sens Transducers 165:155–163Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Noraain Mohamed Saraf
    • 1
    Email author
  • Khairun Najwa Kamarolzaman
    • 1
  • Nurhafiza Md Saad
    • 1
  • Nafisah Khalid
    • 1
  • Abdul Rauf Abdul Rasam
    • 1
  • Ainon Nisa Othman
    • 1
  1. 1.Faculty of Architecture, Planning and SurveyingCentre of Studies for Surveying Science and Geomatics, Universiti Teknologi MARAShah AlamMalaysia

Personalised recommendations