Advertisement

Microbiological Tools for Cultural Heritage Conservation

  • Amrita Kumari Panda
  • Rojita Mishra
  • Satpal Singh Bisht
Chapter
  • 27 Downloads

Abstract

Culture and cultural heritage are the imprints of human civilization and architectural depiction of society and cultures. Antique documents and cultural heritages such as historic buildings, monuments, manuscripts and paintings are brittle and undergo physical, chemical and biological deterioration during the course of time. Escalating air pollution and global warming are the main cause of deterioration of stone monuments and artworks. The deterioration process can be restored by employing various microbiological tools such as biocleaning, biomineralization, biocementation and biofilm formation. This chapter summarizes eco-friendly microbiological approaches used to restore cultural heritages, archaeological sites and wall paintings.

Keywords

Cultural heritage Biocleaning Biomineralization Biocementation Deterioration 

References

  1. Adamo P, Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256Google Scholar
  2. Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281PubMedGoogle Scholar
  3. Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E et al (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera cathedral after six years from the treatment. Int Biodeterior Biodegradation 65:1004–1011Google Scholar
  4. Allemand L, Bahn PG (2005) Best way to protect rock art is to leave it alone. Nature 433:800PubMedGoogle Scholar
  5. Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459PubMedGoogle Scholar
  6. Arya AA, Shah R, Sadasivan S (2001) Curr Sci 81:793–799Google Scholar
  7. Ausset P, Lefèvre RA, Del Monte M (2000) Early mechanisms of development of sulfated black crusts on carbonate stone, pp 329–337. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Venice, Italy. Elsevier Science, AmsterdamGoogle Scholar
  8. Berk SG, Mitchell R, Bobbie RJ, Nickels JS, White DC (2001) Int Biodeterior Biodegrad 48:167–175Google Scholar
  9. Bindschedler S, Cailleau G, Verrecchia E (2016) Role of fungi in the biomineralization of calcite. Fortschr Mineral 6:41Google Scholar
  10. Biswas J, Sharma K, Harris KK, Rajput Y (2013) Biodeterioration agents: bacterial and fungal diversity dwelling in or on the pre-historic rock-paints of Kabra-pahad, India. Iran J Microbiol 5:309PubMedPubMedCentralGoogle Scholar
  11. Bjordal CG, Nilsson T, Daniel G (1999) Int Biodeterior Biodegradation 43:63–71Google Scholar
  12. Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155PubMedPubMedCentralGoogle Scholar
  13. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411Google Scholar
  14. Bugini R, Laurenzi Tabasso M, Realini M (2000) Rate of formation of black crusts on marble. A case study. J Cult Herit 1:111–116Google Scholar
  15. Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155Google Scholar
  16. Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737PubMedPubMedCentralGoogle Scholar
  17. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675PubMedPubMedCentralGoogle Scholar
  18. Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:81–90Google Scholar
  19. Comensoli L et al (2017) Use of bacteria to stabilize archaeological iron. Appl Environ Microbiol 83:e03478–e03416PubMedPubMedCentralGoogle Scholar
  20. Concha-Lozano N, Gaudon P, Pages J, de Billerbeck G, Lafon D, Eterradossi O (2012) Protective effect of endolithic fungal hyphae on oolitic limestone buildings. J Cult Herit 13:120–127Google Scholar
  21. Cote C, Rosas O, Basseguy R (2015) Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion? Corros Sci 94:104–113Google Scholar
  22. Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9PubMedGoogle Scholar
  23. Cuzman OA, Ventura S, Sili C, Mascalchi C, Turchetti T, D’Acqui LP, Tiano P (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60:81–95PubMedGoogle Scholar
  24. De Graef B, De Windt W, Dick J, Verstraete W, De Belie N (2005) Cleaning of concrete fouled by lichens with the aid of Thiobacilli. Mater Struct 38:875–882Google Scholar
  25. McIlroy de la Rosa JP, Warke PA, Smith BJ (2012) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37:325–351Google Scholar
  26. McIlroy de la Rosa JP, Warke PA, Smith BJ (2014) The effects of lichen cover upon the rate of solutional weathering of limestone. Geomorphology 220:81–92Google Scholar
  27. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24(1):36Google Scholar
  28. Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314PubMedPubMedCentralGoogle Scholar
  29. Erşan YÇ, Belie N, Boon N (2015) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118Google Scholar
  30. Ettenauer J, Piñar G, Sterflinger K, Gonzalez-Muñoz MT, Jroundi F (2011) Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environ 409:5337–5352PubMedPubMedCentralGoogle Scholar
  31. Farooq M, Hassan M, Gull F (2015) Mycobial deterioration of stone monuments of Dharmarajika, Taxila. J Microbiol Exp 2:36Google Scholar
  32. Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291PubMedGoogle Scholar
  33. Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70Google Scholar
  34. Gadd GM (2017) Geomicrobiology of the built environment. Nat Microbiol 2:16275PubMedGoogle Scholar
  35. Gadd GM, Dyer TD (2017) Bioprotection of the built environment and cultural heritage. Microb Biotechnol 10:1152–1156PubMedPubMedCentralGoogle Scholar
  36. Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulfated-crusts from marble using sulphate-reducing bacteria. In: Webster RGM (ed) Proceedings of the international conference on stone cleaning and the nature, soiling and decay mechanisms of stone. Donheadd, Edinburgh, pp 160–165Google Scholar
  37. Gioventù E, Lorenzi P, Improta MC, Cappitelli F (2012) Bacterial cleaning technology for marble surfaces affected by black crust: comparison with chemical and laser treatments. 12th International Congress on the Deterioration and Conservation of Stone, Columbia University, New YorkGoogle Scholar
  38. Gómez-Alarcón G, Munoz ML (1995) Flores M excretion of organic acids by fungal strains isolated from decayed sandstone. Int Biodeterior Biodegrad 34:169–180Google Scholar
  39. Gu JD, Mitton DB, Ford TE, Mitchell R (1998) Biodegradation 9:39–45PubMedGoogle Scholar
  40. Helmi FM, Elmitwalli HR, Elnagdy SM, El-Hagrassy AF (2016) Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecol Eng 90:367–371Google Scholar
  41. Hueck-van der Plas EH (1965) The biodeterioration of materials as a part of hylobiology. Mater Org 1:5–34Google Scholar
  42. Jonkers H (2011) Bacteria-based self-healing concrete. Heron 56:1–12Google Scholar
  43. Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol 2:270PubMedPubMedCentralGoogle Scholar
  44. Joseph E et al (2012a) Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana. Front Microbiol 2:270PubMedPubMedCentralGoogle Scholar
  45. Joseph E, Simon A, Mazzeo R, Job D, W€orle M (2012b) Spectroscopic characterization of an innovative biological treatment for corroded metal artefacts. J Raman Spectrosc 43:1612–1616Google Scholar
  46. Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT (2010) Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol 60:39–54PubMedGoogle Scholar
  47. Jroundi F, Schiro M, Ruiz-Agudo E, Elert K, Martín-Sánchez I, González-Muñoz MT, Rodriguez-Navarro C (2017) Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat Commun 8:279PubMedPubMedCentralGoogle Scholar
  48. Junier P, Joseph E (2017) Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials. Microb Biotechnol 10:1145–1148PubMedPubMedCentralGoogle Scholar
  49. Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61Google Scholar
  50. O’Toole GA, Ghannoum MA (2004) Introduction to biofilms: conceptual themes. In Microbial Biofilms. American Society of Microbiology, pp 1–3Google Scholar
  51. Pinar G, Sterflinger K (2009) Microbes and building materials. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Science Publishers, New York, pp 163–188Google Scholar
  52. Polo A, Cappitelli F, Brusetti L, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60:1–14Google Scholar
  53. Ranalli G, Chiavarini M, Guidetti E, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganism for the removal of sulphates on artistic stone works. Int Biodeterior Biodegrad 40:255–261Google Scholar
  54. Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. Springer, BostonGoogle Scholar
  55. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83PubMedGoogle Scholar
  56. Ranalli G et al (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126:1785–1796PubMedGoogle Scholar
  57. Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G, Giantomassi C, Zari D, Virilli P (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteriagel. J Appl Microbiol 126(6):1785–1796PubMedGoogle Scholar
  58. Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193PubMedPubMedCentralGoogle Scholar
  59. Rolleke S, Witte A, Wanner G, Lubitz W (1998) Medieval wall painting-an habitat for Archaea: identification of Archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding 16S rRNA in a medieval painting. Int Biodeterior Biodegr 41:85–92Google Scholar
  60. Rubio RF, Bolivar FC (1997) Int Biodeterior Biodegradation 40:161–169Google Scholar
  61. Saiz-Jimenez C (1999) Geomicrobiol J 16:27–37Google Scholar
  62. Saiz-Jimenez C, Laiz L (2000) Int Biodeterior Biodegradation 46:319–326Google Scholar
  63. Sand W, Bock E (1991) Int Biodeterior Biodegradation 27:175–183Google Scholar
  64. Schabereiter-Gurtner C, Pinar G, Lubitz W, Rolleke S (2001) J Microbiol Methods 47:345–354PubMedGoogle Scholar
  65. Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643PubMedGoogle Scholar
  66. Slavík M, Bruthans J, Filippi M, Schweigstillová J, Falteisek L, Jaroslav Řihošek J (2017) Biologically-initiated rock crust on sandstone: mechanical and hydraulic properties and resistance to erosion. Geomorphology 278:298–313Google Scholar
  67. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55Google Scholar
  68. Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegr 46(3):251–258Google Scholar
  69. Urzì C, Brusetti L, Salamone P, Sorlini C, Stachebrandt E, Doffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 3:471–479PubMedGoogle Scholar
  70. Zhu T, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 82:459–468Google Scholar
  71. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Amrita Kumari Panda
    • 1
  • Rojita Mishra
    • 2
  • Satpal Singh Bisht
    • 3
  1. 1.Department of MicrobiologyGogate Jogalekar CollegeRatnagiriIndia
  2. 2.Department of BotanyPolasara Science CollegeGanjamIndia
  3. 3.Department of ZoologyKumaun UniversityNainitalIndia

Personalised recommendations