Comparative Analysis of Selected Geotagging Methods

  • Sichen Mu
  • Mateusz Piwowarczyk
  • Marcin Kutrzyński
  • Bogdan TrawińskiEmail author
  • Zbigniew Telec
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1178)


Geotagging is a rapidly growing technology in digital photography and searching for specific landmarks, and helps everyone in our daily lives. Navigation applications and travel guides put a number of geotagged photos on the maps, providing a good overview of the destination. Recently, the development of photo geotagging methods has become a popular issue. Implementations of the SIFT and SURF algorithms and training of convolutional neural networks to obtain image classification for landmark images are presented in this paper. Based on the results of the classification of images and geotags of other similar images, geotags have been assigned to the target images. In addition, the results of image classification obtained using feature detection algorithms and neural networks were compared and analyzed.


Geotagging Landmark recognition SIFT algorithm SURF algorithm Convolutional neural network 


  1. 1.
    Alansari, Z., et al.: Challenges of Internet of Things and big data integration. In: Miraz, M.H., Excell, P., Ware, A., Soomro, S., Ali, M. (eds.) iCETiC 2018. LNICST, vol. 200, pp. 47–55. Springer, Cham (2018). Scholar
  2. 2.
    Avrithis, Y., Kalantidis, Y., Tolias, G., Spyrou, E.: Retrieving landmark and non-landmark images from community photo collections. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 153–162. ACM (2010)Google Scholar
  3. 3.
    Azhar, R., Tuwohingide, D., Kamudi, D., Suciati, N., et al.: Batik image classification using SIFT feature extraction, bag of features and support vector machine. Procedia Comput. Sci. 72, 24–30 (2015)CrossRefGoogle Scholar
  4. 4.
    Balakrishnama, S., Ganapathiraju, A.: Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 18, 1–8 (1998)Google Scholar
  5. 5.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). Scholar
  6. 6.
    Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural networks for document processing (2006)Google Scholar
  7. 7.
    Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  8. 8.
    Horak, K., Klecka, J., Bostik, O., Davidek, D.: Classification of surf image features by selected machine learning algorithms. In: 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 636–641. IEEE (2017)Google Scholar
  9. 9.
    Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. (CSUR) 50(2), 20 (2017)CrossRefGoogle Scholar
  10. 10.
    Juan, L., Gwon, L.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Signal Process. Image Process. Pattern Recogn. 8(3), 169–176 (2007)Google Scholar
  11. 11.
    Khan, N.Y., McCane, B., Wyvill, G.: SIFT and SURF performance evaluation against various image deformations on benchmark dataset. In: 2011 International Conference on Digital Image Computing: Techniques and Applications, pp. 501–506. IEEE (2011)Google Scholar
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  13. 13.
    Lachenbruch, P.A., Goldstein, M.: Discriminant analysis. Biometrics, 69–85 (1979) Google Scholar
  14. 14.
    Le Callet, P., Viard-Gaudin, C., Barba, D.: A convolutional neural network approach for objective video quality assessment (2006)Google Scholar
  15. 15.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). Scholar
  16. 16.
    Luo, J., Ma, Y., Takikawa, E., Lao, S., Kawade, M., Lu, B.L.: Person-specific SIFT features for face recognition. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 2, pp. II-593. IEEE (2007)Google Scholar
  17. 17.
    Murphy, K.P., et al.: Naive Bayes classifiers, vol. 18, p. 60. University of British Columbia (2006)Google Scholar
  18. 18.
    Qassim, H., Verma, A., Feinzimer, D.: Compressed residual-VGG16 CNN model for big data places image recognition. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 169–175. IEEE (2018)Google Scholar
  19. 19.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  20. 20.
    Song, X., Liu, J., Tang, X.: Image retrieval-based landmark recognition system. Electron. Des. Eng. (12), 54 (2012)Google Scholar
  21. 21.
    Szarvas, M., Yoshizawa, A., Yamamoto, M., Ogata, J.: Pedestrian detection with convolutional neural networks. In: Intelligent Vehicles Symposium, pp. 224–229 (2005)Google Scholar
  22. 22.
    Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). Scholar
  23. 23.
    Zheng, Y.T., et al.: Tour the world: building a web-scale landmark recognition engine. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1085–1092. IEEE (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Faculty of Computer Science and ManagementWrocław University of Science and TechnologyWrocławPoland

Personalised recommendations