Optical Properties of Metal, Semiconductor and Ceramic Nanostructures Grown by Liquid Phase-Pulsed Laser Ablation

  • P. M. AneeshEmail author
  • M. K. Jayaraj
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


Low-dimensional nanomaterials with enhanced size effect properties such as surface plasmon resonance and quantum confinements offer an unprecedented physical phenomenon, reducing devices down to atomic scale. In the last few decades, research interest in nanostructured materials has aroused due to their unusual electronic, optical, magnetic and chemical properties which are different from their bulk counterpart. In recent years, great efforts have been made on the synthesis of colloidal nanoparticles because of their promising application in various fields such as drug delivery, imaging and diagnostics. In this chapter, we discuss the synthesis of metal, semiconductor and ceramic nanoparticles by liquid phase-pulsed laser ablation (LP-PLA) technique. The optical properties of gold and silver nanoparticles grown by LP-PLA method were discussed in detail in this chapter. This chapter also discusses the growth of surfactant-free highly luminescent, transparent, chemically pure and biocompatible zinc oxide (ZnO) nanoparticles by LP-PLA. The dependence of time of ablation, laser fluence, oxygen and nitrogen bubbling during ablation on the properties of the ZnO nanoparticles was investigated. The growth of ZnO nanoparticles by varying the pH of the media gives some inference on the stability of this colloidal solution and the formation of passivation layer on the surface of these particles. The luminescent properties of the europium-doped hydroxyapatite grown by LP-PLA technique were also discussed in this chapter. These luminescent nanoparticles find immense applications in biomedical imaging and cancer detections.


  1. 1.
    Yang PH, Sun X, Chiu J-F (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjugate Chem 16(3):494–496CrossRefGoogle Scholar
  2. 2.
    Xueyi Z, Jianrong W, Gareth RW, Shiwei N, Qianqian Q, Li-Min Z (2019) Functionalized MoS2-nanosheets for targeted drug delivery and chemo-photothermal therapy. Colloids Surf B 173(1):101–108CrossRefGoogle Scholar
  3. 3.
    Gao X, Cui Y, Levenson M, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRefGoogle Scholar
  4. 4.
    Chen J, Saeki F, Wiley BJ, Chang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li X, Xia Y (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477CrossRefGoogle Scholar
  5. 5.
    Shengjie X, Dian L, Peiyi W (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25(7):1127–1136CrossRefGoogle Scholar
  6. 6.
    Kevin JM, Lihong J, Adam MB, Surangi J, Wen T, Mingyuan G, Robert L, Ana J (2018) Biocompatible semiconductor quantum dots as cancer imaging agents. Adv Mater 30(18):1706356 (1–18)Google Scholar
  7. 7.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651CrossRefGoogle Scholar
  8. 8.
    Chen J, Wiley B, Campbell D, Saeki F, Chang L, Au L, Lee J, Li X, Xia Y (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17(18):2255–2261CrossRefGoogle Scholar
  9. 9.
    Jeong-Eun P, Minho K, Jae-Ho H, Jwa-Min N (2017) Golden opportunities: plasmonic gold nanostructures for biomedical applications based on the second near-infrared window. Small Methods 1(3):1600032 (1–6)Google Scholar
  10. 10.
    Guanying C, Indrajit R, Chunhui Y, Paras NP (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116(5):2826–2885CrossRefGoogle Scholar
  11. 11.
    Barcikowski S, Hustedt M, Chichkov BN (2008) Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers. Polimery 53(9):657–662CrossRefGoogle Scholar
  12. 12.
    Compagnini G, Scalisi AA, Puglisi O (2002) Ablation of Nobel metals on liquids: a method to obtain nanoparticles in a thin polymeric film. Phys Chem Chem Phys 4(12):2787–2791CrossRefGoogle Scholar
  13. 13.
    Rybaltovskii AO, Buznik VM, Zavorotny YuS, Minaev NV, Timashev PS, Churbanov SN, Bagratashvili BN (2018) Synthesis of film nanocomposites under laser ablation and drift embedding of nanoparticles into polymer in supercritical carbon dioxide. Russ J Phys Chem B 12(7):1160–1165CrossRefGoogle Scholar
  14. 14.
    Chacko L, Poyyakkara A, Kumar VBS, Aneesh PM (2018) MoS2-ZnO nanocomposites as highly functional agents for anti-angiogenic and anti-cancer theranostics. J Mater Chem B. 6(19):3048–3057CrossRefGoogle Scholar
  15. 15.
    Dijkkamp D, Venkatesan T, Wu XD, Shaheen SA, Jisrawi N, Minlee YH, Mclean WL, Croft M (1987) Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high TC bulk material. Appl Phys Lett 51(8):619–621CrossRefGoogle Scholar
  16. 16.
    Silvia H, Kota H, Hikaru S, Hidenori H, Hideo H (2016) In-situ growth of superconducting SmO1−xFxFeAs thin films by pulsed laser deposition. Sci Rep 6(35797):1–6Google Scholar
  17. 17.
    Pappas DL, Saenger KL, Bruley J, Krakow W, Cuomo JJ, Gu T, Collins RW (1992) Pulsed laser deposition of diamond-like carbon films. Appl Phys 71(11):5675CrossRefGoogle Scholar
  18. 18.
    Cheng Y, Lu YM, Guo YL, Huang GJ, Wang SY, Tian FT (2017) Multilayers diamond-like carbon film with germanium buffer layers by pulsed laser deposition. Surf Rev Lett 24(02):1750014 (1–6)Google Scholar
  19. 19.
    Radhakrishnan G, Adams PM (1999) Pulsed-laser deposition of particulate-free TiC coatings for tribological applications. Appl Phys A 69(Suppl 1):S33–S38Google Scholar
  20. 20.
    Balakrishnan G, Elangovan T, Shin-Sung Y, Kim D-E, Kuppusami P, Venkatesh BR, Sastikumar D, Jungil S (2017) Microstructural and tribological studies of Al2O3/ZrO2 nanomultilayer thin films prepared by pulsed laser deposition. Adv Mater Lett 8(4):410–417CrossRefGoogle Scholar
  21. 21.
    Dureuil V, Ricolleau C, Gandais M, Grigis C, Lacharme JP, Naudon A (2001) Growth and morphology of cobalt nanoparticles on alumina. J Cryst Growth 233(4):737–748CrossRefGoogle Scholar
  22. 22.
    Ayman MD, Wael HE, Ali AS, Mohamed HT (2015) Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrosc Lett 48(9):638–645CrossRefGoogle Scholar
  23. 23.
    Patil PP, Phase DM, Kulkarni SA, Ghaisas SV, Kulkarni SK, Kanetkar SM, Ogale SB, Bhide VG (1987) Pulsed-laser-induced reactive quenching at liquid–solid interface: aqueous oxidation of iron. Phys Rev Lett 58(3):238–241CrossRefGoogle Scholar
  24. 24.
    Scherer GW (1985) Glasses and ceramics from colloids. J Non-Cryst Solids 73(1):661–667CrossRefGoogle Scholar
  25. 25.
    Dahl JA, Maddux BL, Hutchison JE (2007) Towards greener nanosynthesis. Chem Rev 107(6):2228–2269CrossRefGoogle Scholar
  26. 26.
    Hartmann S, Brandhuber D, Husing N (2007) Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Acc Chem Res 40(9):885–894CrossRefGoogle Scholar
  27. 27.
    Mende S, Stenger F, Peukert W, Schwedes J (2004) Production of sub-micron particles by wet comminution in stirred media mills. J Mater Sci 39(16):5223–5226CrossRefGoogle Scholar
  28. 28.
    Besner S, Kabashin AV, Winnik FM, Meunier M (2008) Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Appl Phys A 93(4):955–959CrossRefGoogle Scholar
  29. 29.
    Wang JB, Zhang CY, Zhong XL, Yang GW (2002) Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction. Chem Phys Lett 361(1–2):86–90CrossRefGoogle Scholar
  30. 30.
    Suha IA, Adel KM, Zaineb FM (2015) Study the effect of different liquid media on the synthesis of alumina (Al2O3) nanoparticle by pulsed laser ablation technique. Manuf Sci Technol 3(4):77–81Google Scholar
  31. 31.
    Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68(2):775–784CrossRefGoogle Scholar
  32. 32.
    Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52(4):648–698CrossRefGoogle Scholar
  33. 33.
    Liu P, Cui H, Wang C, Yang GW (2010) From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys Chem Chem Phys 12(16):3942–3952CrossRefGoogle Scholar
  34. 34.
    Berthe L, Fabbro R, Peyre P, Tollier L, Bartnicki E (1997) Shock waves from a water-confined laser-generated plasma. J Appl Phys 82(6):2826–2832CrossRefGoogle Scholar
  35. 35.
    Zhu S, Lu YF, Hong MH (2001) Laser ablation of solid substrates in a water-confined environment. Appl Phys Lett 79(9):1396–1398CrossRefGoogle Scholar
  36. 36.
    Zhu S, Lu YF, Hong MH, Chen XY (2001) Laser ablation of solid substrates in water and ambient air. J Appl Phys 89(4):2400–2403CrossRefGoogle Scholar
  37. 37.
    Shaw SJ, Schiffers WP, Gentry TP, Emmony DC (1999) A study of the interaction of a laser-generated cavity with a nearby solid boundary. J Phys D 32(14):1612–1617CrossRefGoogle Scholar
  38. 38.
    Takada N, Sasaki T, Sasaki K (2008) Synthesis of crystalline TiN and Si particles by laser ablation in liquid nitrogen. Appl Phys A 93(4):833–836CrossRefGoogle Scholar
  39. 39.
    Rawat R, Tiwari A, Vendamani VS, Pathak AP, VenugopalRao S, Tripathi A (2018) Synthesis of Si/SiO2 nanoparticles using nanosecond laser ablation of silicate-rich garnet in water. Opt Mater 75:350–356CrossRefGoogle Scholar
  40. 40.
    Simakin AV, Voronov VV, Kirichenko NA, Shafeev GA (2004) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Phys A 79(4):1127–1132CrossRefGoogle Scholar
  41. 41.
    Anton AP, Gleb T, Noé D, Charlotte B, Khaled M, Nicola J, Al-Kattan A, Benoit L, Diane B, Serge M, Da Silva A, Marie-Anne E, Andrei VK (2019) Laser-synthesized TiN nanoparticles as promising plasmonic alternative for biomedical applications. Sci Rep 9(1):1194 (1–11)Google Scholar
  42. 42.
    Singh SC, Gopal R (2007) Zinc nanoparticles in solution by laser ablation technique. Bull Mater Sci 30(3):291–293CrossRefGoogle Scholar
  43. 43.
    Neli M, Aljulaih AA, Wilfried W, Sergei AK, Satoru I (2018) Laser-ablated ZnO nanoparticles and their photocatalytic activity toward organic pollutants. Materials 11(7):1127 (1–11)Google Scholar
  44. 44.
    Tsuji T, Hamagami T, Kawamura T, Yamaki J, Tsuji M (2005) Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Appl Surf Sci 243(1–4):214–219CrossRefGoogle Scholar
  45. 45.
    Borghei SM, Bakhtiyari F (2017) Study of the physical properties of cobalt/cobalt oxide particles synthesized by pulsed laser ablation in different liquid media. Acta Phys Pol A 131(3):332–335CrossRefGoogle Scholar
  46. 46.
    Sreeja R, Reshmi R, Aneesh PM, Jayaraj MK (2012) Liquid phase pulsed laser ablation of metal nanoparticles for nonlinear optical applications. Sci Adv Mater 4(3–4):439–448CrossRefGoogle Scholar
  47. 47.
    Dongshi Z, Wonsuk C, Jurij J, Mark-Robert K, Stephan B, Sung-Hak C, Koji S (2018) Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials 8(7):529 (1–17)Google Scholar
  48. 48.
    Yeh MS, Yang YS, Lee YP, Lee HF, Yeh YH, Yeh CS (1999) Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J Phys Chem B 103(33):6851–6857CrossRefGoogle Scholar
  49. 49.
    Marzun G, Bönnemann H, Lehmann C, Spliethoff B, Weidenthaler C, Barcikowski S (2017) Role of dissolved and molecular oxygen on Cu and PtCu alloy particle structure during laser ablation synthesis in liquids. Chemphyschem 18(9):1175–1184CrossRefGoogle Scholar
  50. 50.
    Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108(43):16864CrossRefGoogle Scholar
  51. 51.
    Xiaoxia X, Lei G, Guotao D (2018) The fabrication of Au@C core/shell nanoparticles by laser ablation in solutions and their enhancements to a gas sensor. Micromachines 9(6):278 (1–13)Google Scholar
  52. 52.
    Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186(1–4):546–551CrossRefGoogle Scholar
  53. 53.
    De Bonis A, Santagata A, Galasso A, Laurita A, Teghil R (2017) Formation of titanium carbide (TiC) and TiC@C core–shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid. J Colloid Interface Sci 489:76–84CrossRefGoogle Scholar
  54. 54.
    Sugiyama M, Okazaki H, Koda S (2002) Size and shape transformation of TiO2 nanoparticles by irradiation of 308-nm laser beam. Jpn J Appl Phys 41(7A):4666–4674CrossRefGoogle Scholar
  55. 55.
    Wisam JA, Saja QA, Jassim NZ (2018) Production TiO2 nanoparticles using laser ablation in ethanol. Silicon 10(5):2101–2107CrossRefGoogle Scholar
  56. 56.
    Ankin KV, Melnik NN, Simakin AV, Shafeev GA, Voronov VV, Vitukhonovsky AG (2002) Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem Phys Lett 366(3–4):357–360CrossRefGoogle Scholar
  57. 57.
    Ismail RA, Hamoudi WK, Abbas HF (2018) New route for cadmium sulfide nanowires synthesis via pulsed laser ablation of cadmium in thiourea solution. Mater Res Express 5(2):025017 (1–26)Google Scholar
  58. 58.
    Xiao Y, Deng G, Feng G, Ning S, Wang S, Chen X, Yang H, Zhou S (2019) Femtosecond laser induced nano-meter size surface structures on ZnSe film. AIP Adv 9:015106 (1–6)Google Scholar
  59. 59.
    Compagnini G, Scalisi AA, Puglisi O (2003) Production of gold nanoparticles by laser ablation in liquid alkanes. J Appl Phys 94(12):7874–7877CrossRefGoogle Scholar
  60. 60.
    Wang JB, Yang GW, Zhang CY, Zhong XL, Ren ZHA (2003) Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction. Chem Phys Lett 367(1–2):10–14CrossRefGoogle Scholar
  61. 61.
    Yang L, May PW, Yin L, Smith JA, Rosser KN (2007) Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diamond Relat Mater 16(4–7):725–729CrossRefGoogle Scholar
  62. 62.
    Sasaki T, Liang C, Nichols WT, Shimizu Y, Koshizaki N (2004) Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. Appl Phys A 79(4):1489–1492CrossRefGoogle Scholar
  63. 63.
    Liang CH, Shimizu Y, Sasaki T, Koshizaki N (2003) Synthesis of ultrafine SnO2−x nanocrystals by laser-induced reactive quenching in liquid medium. J Phys Chem B 107(35):9220–9225CrossRefGoogle Scholar
  64. 64.
    Liang CH, Shimizu Y, Sasaki T, Koshizaki N (2005) Preparation of ultrafine TiO2 nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution. Appl Phys A 80(4):819–822CrossRefGoogle Scholar
  65. 65.
    Zeng HB, Cai WP, Hu JL, Duan GT, Liu PS, Li Y (2006) Violet photoluminescence from shell layer of Zn/ZnO core–shell nanoparticles induced by laser ablation. Appl Phys Lett 88(17):171910 (1–3)Google Scholar
  66. 66.
    Ajimsha RS, Anoop G, Aravind A, Jayaraj MK (2008) Luminescence from surfactant-free Zno quantum dots prepared by laser ablation in liquid. Electrochem Solid-State Lett 11(2):K14–K17CrossRefGoogle Scholar
  67. 67.
    Aneesh PM, Shijeesh MR, Aravind A, Jayaraj MK (2014) Highly luminescent undoped and Mn-doped Zns nanoparticles by liquid phase pulsed laser ablation. Appl Phys A: Mater Sci Process 116(3):1085–1089CrossRefGoogle Scholar
  68. 68.
    Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particle. Prog Solid State Chem 12(3–4):185–271CrossRefGoogle Scholar
  69. 69.
    Festag G, Steinbruck A, Wolff A, Csaki A, Moller R, Fritzsche W (2005) Optimization of gold nanoparticle-based DNA detection for microarrays. J Fluoresc 15(2):161–170CrossRefGoogle Scholar
  70. 70.
    Mishra YK, Mohapatra S, Avasthi DK, Kabiraj D, Lalla NP, Pivin JC, Sharma H, Kar R, Singh N (2007) Gold-silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18(34):345606 (1–5)Google Scholar
  71. 71.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12(3):788–800CrossRefGoogle Scholar
  72. 72.
    Favier F, Walter EM, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293(5538):2227–2231CrossRefGoogle Scholar
  73. 73.
    Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32(5):435–445CrossRefGoogle Scholar
  74. 74.
    Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94(12):7941–7943CrossRefGoogle Scholar
  75. 75.
    Mafune F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117CrossRefGoogle Scholar
  76. 76.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. J Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  77. 77.
    Gamaly EG, Rode AV, Davies BL (2002) Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9(9):949–957CrossRefGoogle Scholar
  78. 78.
    Link S, El Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  79. 79.
    Karthikeyan B, Thomas J, Philip R (2005) Optical nonlinearity in glass-embedded silver nanoclusters under ultrafast laser excitation. Chem Phys Lett 414(4):346–350CrossRefGoogle Scholar
  80. 80.
    Tilaki RM, Irajizad A, Mahdavi SM (2006) Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A 84(1):215–219CrossRefGoogle Scholar
  81. 81.
    Nichols WT, Sasaki T, Koshizaki N (2006) Laser ablation of a platinum target in water: III. Laser induced reactions. J Appl Phys 100(11):114913 (1–7)Google Scholar
  82. 82.
    Kooli F, Chsem IC, Vucelic W, Jones W (1996) Synthesis and properties of terephthalate and benzoate in intercalates of Mg-Al layered double hydroxides possessing varying layer charge. Chem Mater 8(8):1969–1977Google Scholar
  83. 83.
    Aneesh PM, Aravind A, Reshmi R, Ajimsha RS, Jayaraj MK (2009) Dependence of size of liquid phase pulsed laser ablated ZnO nanoparticles on pH of the medium. Trans Mater Res Soc Jpn 34(4):759–763CrossRefGoogle Scholar
  84. 84.
    Zeng HB, Cai WP, Li Y, Hu JL, Liu PS (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B 109(39):18260–18266CrossRefGoogle Scholar
  85. 85.
    Lin BX, Fu ZX, Jia YB (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79(7):943–945CrossRefGoogle Scholar
  86. 86.
    Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2(8–9):944–961CrossRefGoogle Scholar
  87. 87.
    Zhou H, Alves H, Hofmann DM, Kriegseis W, Meyer BK, Kaczmarczyk G, Hoffmann A (2002) Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core–shell structure. Appl Phys Lett 80(2):210–212CrossRefGoogle Scholar
  88. 88.
    Joshy NV, Saji KJ, Jayaraj MK (2008) Spatial and temporal studies of laser ablated ZnO plasma. J Appl Phys 104(5):053307 (1–6)Google Scholar
  89. 89.
    Nakagawa M, Mitsudo H (1986) Anomalous temperature dependence of the electrical conductivity of zinc oxide thin films. Surf Sci 175(1):157–176CrossRefGoogle Scholar
  90. 90.
    He C, Saski T, Usui H, Shimizu Y, Koshizaki N (2007) Fabrication of ZnO nanoparticles by pulsed laser ablation in aqueous media and pH-dependent particle size: an approach to study the mechanism of enhanced green photoluminescence. J Photochem Photobiol A: Chem 191(1):66–73CrossRefGoogle Scholar
  91. 91.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317CrossRefGoogle Scholar
  92. 92.
    Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111(2):253–280CrossRefGoogle Scholar
  93. 93.
    Paulus MJ, Gleason SS, Easterly ME, Foltz CJ (2001) A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Anim 30(3):36–45Google Scholar
  94. 94.
    Zondervan R, Kulzer F, Kol’chenko MA, Orrit M (2004) Photobleaching of Rhodamine 6G in poly(vinyl alochol) at the ensemble and single-molecule levels. J Phys Chem A 108(10):1657–1665CrossRefGoogle Scholar
  95. 95.
    Dosev D, Nichkova M, Kennedy IM (2008) Inorganic lanthanide nanophosphors in biotechnology. J Nanosci Nanotechnol 8(3):1052–1067CrossRefGoogle Scholar
  96. 96.
    Yang C, Yang P, Wang W, Gai S, Wang J, Zhang M, Lin J (2009) Synthesis and characterization of Eu-doped hydroxyapatite through a microwave assisted microemulsion process. Solid State Sci 11(11):1923–1928CrossRefGoogle Scholar
  97. 97.
    Chane-Ching JY, Lebugle A, Rousselot I, Pourpoint A, Pelle F (2007) Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. J Mater Chem 17(28):2904–2913CrossRefGoogle Scholar
  98. 98.
    Jagannathan R, Kottaisamy M (1995) Eu3+ luminescence: a spectral probe in M5(PO4)3X apatites (M = Ca or Sr; X = F, Cl, Br or OH). J Phys: Condens Mater 7(44):8453–8466Google Scholar
  99. 99.
    Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C 13(3):204–223CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PhysicsCentral University of KeralaKasaragodIndia
  2. 2.Department of PhysicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations