Advertisement

Fluid-Solid Coupling Analysis of Granular Materials

  • Shunying JiEmail author
  • Lu Liu
Chapter
  • 28 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

The coupling between granular materials and fluid widely exist in nature and human activities, such as sediment in the river course, seepage of liquid water in sand and gravel soil, and interactive movement in the gas-solid two-phase flow in chemical equipment. In order to study the fluid-solid coupling problem of granular materials, the discrete element method (DEM) is usually adopted to simulate solid particles, while various computational methods can be used to simulate fluid.

References

  1. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6:527–539CrossRefGoogle Scholar
  2. Bokkers GA (2005) Multi-level modeling of the hydrodynamics in gas phase polymerisation reactors. PhD Thesis, University of Twente, EnschedeGoogle Scholar
  3. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30(1):329–364MathSciNetzbMATHCrossRefGoogle Scholar
  4. Chu KW, Wang B, Yu AB et al (2009) CFD-DEM modelling of multiphase flow in dense medium cyclones. Powder Technol 193(3):235–247CrossRefGoogle Scholar
  5. Cook BK, Noble DR, Williams JR (2004) A direct simulation method for particle-fluid systems. Eng Comput 21(2/3/4):151–168zbMATHCrossRefGoogle Scholar
  6. Deen NG, Annaland MVS, Hoef MAVD et al (2007) Review of discrete particle modeling of fluidized beds. Chem Eng Sci 62(1–2):28–44CrossRefGoogle Scholar
  7. Deng L, Liu Y, Wang W et al (2013) A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas-solid fluidization. Chem Eng Sci 99(99):89–101CrossRefGoogle Scholar
  8. Eitzlmayr A, Koscher G, Khinast J (2014) A novel method for modeling of complex wall geometries in smoothed particle hydrodynamics. Comput Phys Commun 185(10):2436–2448CrossRefGoogle Scholar
  9. Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J Comput Phys 195(2):602–628zbMATHCrossRefGoogle Scholar
  10. Feng ZG, Michaelides EE (2005) Proteus: a direct forcing method in the simulations of particulate flows. J Comput Phys 202(1):20–51zbMATHCrossRefGoogle Scholar
  11. Feng YT, Han K, Owen DRJ (2007) Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: Computational issues. Int J Numer Meth Eng 72(9):1111–1134MathSciNetzbMATHCrossRefGoogle Scholar
  12. Galindo-Torres SA (2013) A coupled discrete element lattice Boltzmann method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119MathSciNetzbMATHCrossRefGoogle Scholar
  13. Gotoh H, Sakai T (2006) Key issues in the particle method for computation of wave breaking. Coast Eng 53:171–179CrossRefGoogle Scholar
  14. Habte MA, Wu CJ (2017) Particle sedimentation using hybrid Lattice Boltzmann-immersed boundary method scheme. Powder Technol 315:486–498CrossRefGoogle Scholar
  15. Han K, Feng YT, Owen DRJ (2007) Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems. Comput Struct 85(11):1080–1088CrossRefGoogle Scholar
  16. He X, Chen S, Doolen GD (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146(1):282–300MathSciNetzbMATHCrossRefGoogle Scholar
  17. He X, Luo LS (1997) Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E 56(6):6811CrossRefGoogle Scholar
  18. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian-Eulerian technique. J Comput Phys 169(2):427–462MathSciNetzbMATHCrossRefGoogle Scholar
  19. Ji S, Chen X, Liu L (2019) Coupled DEM-SPH method for interaction between dilated polyhedral particles and fluid. Mathematical Problems in EngineeringGoogle Scholar
  20. Jonsén P, Pålsson BI, Stener JF et al (2014) A novel method for modelling of interactions between pulp, charge and mill structure in tumbling mills. Miner Eng 63(63):65–72CrossRefGoogle Scholar
  21. Kafui KD, Thornton C, Adams MJ (2002) Discrete particle-continuum fluid modelling of gas–solid fluidised beds. Chem Eng Sci 57(13):2395–2410CrossRefGoogle Scholar
  22. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn Int J 12(2/3):140–152MathSciNetCrossRefGoogle Scholar
  23. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434CrossRefGoogle Scholar
  24. Ladd AJC (1994a) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309MathSciNetzbMATHCrossRefGoogle Scholar
  25. Ladd AJC (1994b) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J Fluid Mech 271:311–339MathSciNetzbMATHCrossRefGoogle Scholar
  26. Liu GR, Liu MB (2004) Smoothed particle hydrodynamics: a meshfree particle method. World ScientificGoogle Scholar
  27. Lee ES, Moulinec C, Xu R et al (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227(18):8417–8436MathSciNetzbMATHCrossRefGoogle Scholar
  28. Marrone S, Bouscasse B, Colagrossi A et al (2012) Study of ship wave breaking patterns using 3D parallel SPH simulations. Comput Fluids 69(11):54–66MathSciNetzbMATHCrossRefGoogle Scholar
  29. McNamara GR, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice automata. Phys Rev Lett 61(20):2332–2335CrossRefGoogle Scholar
  30. Monaghan JJ, Huppert HE, Worster MG (2005) Solidification using smoothed particle hydrodynamics. J Comput Phys 206(2):684–705zbMATHCrossRefGoogle Scholar
  31. Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48:89–96zbMATHCrossRefGoogle Scholar
  32. Monaghan JJ (1997) SPH and Riemann solvers. J Comput Phys 136(2):298–307MathSciNetzbMATHCrossRefGoogle Scholar
  33. Niu XD, Shu C, Chew YT et al (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354(3):173–182zbMATHCrossRefGoogle Scholar
  34. Noble DR, Torczynski JR (1998) A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C 9(08):1189–1201CrossRefGoogle Scholar
  35. Norouzi HR, Zarghami R, Sotudeh-Gharebagh R et al (2016) Coupled CFD-DEM modeling: formulation. Wiley, Implementation and Application to Multiphase FlowsCrossRefGoogle Scholar
  36. Owen DRJ, Leonardi CR, Feng YT (2011) An efficient framework for fluid–structure interaction using the lattice Boltzmann method and immersed moving boundaries. Int J Numer Meth Eng 87(1–5):66–95MathSciNetzbMATHCrossRefGoogle Scholar
  37. Peskin CS (1997) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252MathSciNetzbMATHCrossRefGoogle Scholar
  38. Potapov AV, Hunt ML, Campbell CS (2001) Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method. Powder Technol 116:204–213CrossRefGoogle Scholar
  39. Qian YH, d’Humières D, Lallemand P (1992) Lattice BGK models for Navier-Stokes equation. Europhys Lett 17(6):479zbMATHCrossRefGoogle Scholar
  40. Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33–36):2785–2795zbMATHCrossRefGoogle Scholar
  41. Robinson M, Ramaioli M, Luding S (2014) Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation. Int J Multiph Flow 59(2):121–134CrossRefGoogle Scholar
  42. Rong LW, Zhou ZY, Yu AB (2015) Lattice-Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technol 285:146–156CrossRefGoogle Scholar
  43. Succi S (2001) The lattice Boltzmann method for fluid dynamics and beyond. Oxford University PressGoogle Scholar
  44. Sun P, Colagrossi A, Marrone S et al (2017) The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49MathSciNetCrossRefGoogle Scholar
  45. Sun X, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid–liquid flow by the DEM-SPH method. J Comput Phys 248(5):147–176MathSciNetzbMATHCrossRefGoogle Scholar
  46. Tran DK, Prime N, Froiio F et al (2016) Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling. Eur J Environ Civil Eng, 1–28Google Scholar
  47. Tsuji T, Yabumoto K, Tanaka T (2008) Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM–CFD coupling simulation. Powder Technol 184(2):132–140CrossRefGoogle Scholar
  48. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetzbMATHCrossRefGoogle Scholar
  49. Van der Hoef M, Beetstra R, Kuipers J (2005) Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force. J Fluid Mech 528:233–254MathSciNetzbMATHCrossRefGoogle Scholar
  50. Virk MS, Moatamedi M, Scott SA et al (2012) Quantitative analysis of accuracy of Voidage computations in CFD-DEM simulations. J Comput Multiphase Flows 4(2):183–192MathSciNetCrossRefGoogle Scholar
  51. Wang L, Zhang B, Wang X et al (2013) Lattice Boltzmann based discrete simulation for gas-solid fluidization. Chem Eng Sci 101:228–239CrossRefGoogle Scholar
  52. Washino K, Tan HS, Hounslow MJ et al (2013) A new capillary force model implemented in micro-scale CFD–DEM coupling for wet granulation. Chem Eng Sci 93(4):197–205CrossRefGoogle Scholar
  53. Wolf-Gladrow DA (2004) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. SpringerGoogle Scholar
  54. Wu J, Shu C (2009) Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J Comput Phys 228(6):1963–1979zbMATHCrossRefGoogle Scholar
  55. Wu J, Shu C (2010) Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme. Commun Comput Phys 7(4):793zbMATHCrossRefGoogle Scholar
  56. Xu M, Chen F, Liu X et al (2012) Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU-GPU hybrid computation. Chem Eng J 207:746–757CrossRefGoogle Scholar
  57. Yang X, Liu M, Peng S et al (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method. Coast Eng 108:56–64CrossRefGoogle Scholar
  58. Yu AB, Xu BH (2003) Particle-scale modelling of gas-solid flow in fluidisation. J Chem Technol Biotechnol 78(2–3):111–121CrossRefGoogle Scholar
  59. Zhang H, Tan Y, Shu S et al (2014) Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling. Comput Fluids 94:37–48MathSciNetzbMATHCrossRefGoogle Scholar
  60. Zhang H, Trias FX, Oliva A et al (2015a) PIBM: particulate immersed boundary method for fluid–particle interaction problems. Powder Technol 272:1–13CrossRefGoogle Scholar
  61. Zhang H, Yu A, Zhong W et al (2015b) A combined TLBM-IBM-DEM scheme for simulating isothermal particulate flow in fluid. Int J Heat Mass Transf 91:178–189CrossRefGoogle Scholar
  62. Zhang H, Yuan H, Trias FX et al (2016) Particulate Immersed Boundary Method for complex fluid-particle interaction problems with heat transfer. Comput Math Appl 71(1):391–407MathSciNetCrossRefGoogle Scholar
  63. Zhao J, Shan T (2013) Coupled CFD-DEM simulation of fluid–particle interaction in geomechanics. Powder Technol, 248–258CrossRefGoogle Scholar
  64. Zhu HP, Zhou ZY, Yang RY et al (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62(13):3378–3396CrossRefGoogle Scholar
  65. Zhu HP, Zhou ZY, Yang RY et al (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63(23):5728–5770CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations