Advertisement

Constructions of Irregular Shaped Particles in the DEM

  • Shunying JiEmail author
  • Lu Liu
Chapter
  • 33 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

The discrete element method was first proposed by Cundall in the 1970s. It has been developed to be a powerful way of investigating behaviors of granular materials numerically.

References

  1. Ah B (1981) Superquadrics and angle-preserving transformations. IEEE Comput Graph Appl 1(1):11–23CrossRefGoogle Scholar
  2. Baram RM, Lind PG (2012) Deposition of general ellipsoidal particles. Phys Rev E 85(4 Pt 1):041301CrossRefGoogle Scholar
  3. Barki H, Denis F, Dupont F (2009) Contributing vertices-based Minkowski sum computation of convex polyhedra. Comput Aided Des 41(7):525–538zbMATHCrossRefGoogle Scholar
  4. Boon CW, Houlsby GT, Utili S (2012) A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput Geotech 44(1):73–82CrossRefGoogle Scholar
  5. Cleary PW, Hilton JE, Sinnott MD (2016) Modelling of industrial particle and multiphase flows. Powder Technol 314:232–252CrossRefGoogle Scholar
  6. Cleary PW, Sinnott MD, Morrison RD et al (2017) Analysis of cone crusher performance with changes in material properties and operating conditions using DEM. Miner Eng 100:49–70CrossRefGoogle Scholar
  7. Cleary PW (2010) DEM prediction of industrial and geophysical particle flows. Particuology 8(2):106–118CrossRefGoogle Scholar
  8. Delaney GW, Morrison RD, Sinnott MD et al (2015) DEM modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Miner Eng 74:112–122CrossRefGoogle Scholar
  9. Dong K, Wang C, Yu A (2015) A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chem Eng Sci 126:500–516CrossRefGoogle Scholar
  10. Galindo-Torres SA, Pedroso DM, Williams DJ et al (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266–277CrossRefGoogle Scholar
  11. Garboczi EJ, Bullard JW (2013) Contact function, uniform-thickness shell volume, and convexity measure for 3D star-shaped random particles. Powder Technol 237(3):191–201CrossRefGoogle Scholar
  12. Garboczi EJ, Bullard JW (2017) 3D analytical mathematical models of random star-shape particles via a combination of X-ray computed microtomography and spherical harmonic analysis. Adv Powder Technol 28(2):325–339CrossRefGoogle Scholar
  13. Guo Y, Wassgren C, Hancock B et al (2013) Granular shear flows of flat disks and elongated rods without and with friction. Phys Fluids 25(6):876–879CrossRefGoogle Scholar
  14. Hopkins MA, Tuhkuri J (1999) Compression of floating ice fields. J Geophys Res Atmos 1041:15815–15826CrossRefGoogle Scholar
  15. Hopkins MA (2004) Discrete element modeling with dilated particles. Eng Comput 21(2/3/4):422–430zbMATHCrossRefGoogle Scholar
  16. Houlsby GT (2009) Potential particles: a method for modelling non-circular particles in DEM. Comput Geotech 36(6):953–959CrossRefGoogle Scholar
  17. Ji S, Wang S, Peng Z (2019) Influence of external pressure on granular flow in a cylindrical silo based on discrete element method. Powder Technol 356:702–714CrossRefGoogle Scholar
  18. Khazeni A, Mansourpour Z (2018) Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol 332:265–278CrossRefGoogle Scholar
  19. Kodam M, Curtis J, Hancock B et al (2012) Discrete element method modeling of bi-convex pharmaceutical tablets: Contact detection algorithms and validation. Chem Eng Sci 69(1):587–601CrossRefGoogle Scholar
  20. Li Y, Ji S (2018) A geometric algorithm based on the advancing front approach for sequential sphere packing. Granul Matter 20(4):59CrossRefGoogle Scholar
  21. Lim K, Andrade J (2014) Granular element method for three-dimensional discrete element calculations. Int J Numer Anal Meth Geomech 38(2):167–188CrossRefGoogle Scholar
  22. Lim WL, McDowell GR (2005) Discrete element modeling of railway ballast. Granul Matter 7:19–29zbMATHCrossRefGoogle Scholar
  23. Liu L, Ji S (2019) Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granul Matter 21(3):41CrossRefGoogle Scholar
  24. Liu L, Ji S (2018) Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Appl Ocean Res 75:53–65CrossRefGoogle Scholar
  25. Liu SD, Zhou ZY, Zou RP et al (2014) Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol 253(253):70–79CrossRefGoogle Scholar
  26. Lobo-Guerrero S, Vallejo L (2006) Discrete element method analysis of rail track ballast degradation during cyclic loading. Granular Matter 8(3–4):195–204CrossRefGoogle Scholar
  27. Lu G, Third JR, Müller CR (2012) Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem Eng Sci 78(34):226–235CrossRefGoogle Scholar
  28. Lu G, Third JR, Müller CR (2015) Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem Eng Sci 127:425–465CrossRefGoogle Scholar
  29. Lu G, Third JR, Müller CR (2014) Effect of particle shape on domino wave propagation: a perspective from 3d, anisotropic discrete element simulations. Granul Matter 16(1):107–114CrossRefGoogle Scholar
  30. Lu M, McDowell GR (2007) The importance of modelling ballast particle shape in the discrete element method. Granul Matter 9(1–2):69–80Google Scholar
  31. Ma G, Zhou W, Chang XL et al (2016) A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granul Matter 18(1):1–17CrossRefGoogle Scholar
  32. Maclaughlin MM, Doolin DM (2006) Review of validation of the discontinuous deformation analysis (DDA) method. Int J Numer Anal Meth Geomech 30(4):271–305zbMATHCrossRefGoogle Scholar
  33. Nassauer B, Liedke T, Kuna M (2013) Polyhedral particles for the discrete element method. Granular Matter 15(15):85–93CrossRefGoogle Scholar
  34. Nezami EG, Hashash YMA, Zhao D et al (2004) A fast contact detection algorithm for 3d discrete element method. Comput Geotech 31(7):575–587CrossRefGoogle Scholar
  35. Nezami EG, Hashash YMA, Zhao D et al (2006) Shortest link method for contact detection in discrete element method. Int J Numer Anal Meth Geomech 30(8):783–801zbMATHCrossRefGoogle Scholar
  36. Ngo NT, Indraratna B, Rujikiatkamjorn C (2014) DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Comput Geotech 55(1):224–231CrossRefGoogle Scholar
  37. Peternell M, Steiner T (2007) Minkowski sum boundary surfaces of 3D-objects. Graph Model 69(3–4):180–190CrossRefGoogle Scholar
  38. Podlozhnyuk A, Pirker S, Kloss C (2016) Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput Part Mech 4(1):101–118CrossRefGoogle Scholar
  39. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364CrossRefGoogle Scholar
  40. Qian Z, Garboczi EJ, Ye G et al (2016) Anm: a geometrical model for the composite structure of mortar and concrete using real-shape particles. Mater Struct 49(1–2):149–158CrossRefGoogle Scholar
  41. Shi GH (1988) Discontinuous deformation analysis-a new model for the statics and dynamics of block systems. PhD thesis, University of California, BerkeleyGoogle Scholar
  42. Sinnott MD, Cleary PW (2016) The effect of particle shape on mixing in a high shear mixer. Comput Part Mech 3(4):477–504CrossRefGoogle Scholar
  43. Soltanbeigi B, Podlozhnyuk A, Papanicolopulos S et al (2018) DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol 329:288–303CrossRefGoogle Scholar
  44. Su D, Yan WM (2018) 3D characterization of general-shape sand particles using microfocus X-ray computed tomography and spherical harmonic functions, and particle regeneration using multivariate random vector. Powder Technol 323:8–23CrossRefGoogle Scholar
  45. Varadhan G, Manocha D (2006) Accurate Minkowski sum approximation of polyhedral models. Graph Model 68(4):343–355zbMATHCrossRefGoogle Scholar
  46. Wang J, Li S, Feng C (2015) A shrunken edge algorithm for contact detection between convex polyhedral blocks. Comput Geotech 63(63):315–330CrossRefGoogle Scholar
  47. Wang S, Fan Y, Ji S (2018) Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol 339:534–549CrossRefGoogle Scholar
  48. Wehinger GD, Eppinger T, Kraume M (2015) Evaluating catalytic fixed reactors for dry reforming of methane with detailed CFD. Chem Ing Tec 87(6):734–745CrossRefGoogle Scholar
  49. Wellmann C, Lillie C, Wriggers P (2008) A contact detection algorithm for superellipsoids based on the common-normal concept. Eng Comput 25(5):432–442zbMATHCrossRefGoogle Scholar
  50. Williams JR, Pentland AP (1992) Superquadrics and modal dynamics for discrete elements in interactive design. Eng Comput 9(2):115–127CrossRefGoogle Scholar
  51. Yan B, Regueiro RA, Sture S (2010) Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Eng Comput 27(4):519–550zbMATHCrossRefGoogle Scholar
  52. Yan Y, Zhao J, Ji S (2015) Discrete element analysis of breakage of irregularly shaped railway ballast. Geomech Geoengin 10(1):1–9CrossRefGoogle Scholar
  53. Zeng YW, Jin L, Du X et al (2015) Refined modeling and movement characteristics analyses of irregularly shaped particles. Int J Numer Anal Meth Geomech 39(4):388–408CrossRefGoogle Scholar
  54. Zhang Y, Wang J, Xu Q et al (2015) DDA validation of the mobility of earthquake-induced landslides. Eng Geol 194:38–51CrossRefGoogle Scholar
  55. Zhao S, Zhang N, Zhou X et al (2017) Particle shape effects on fabric of granular random packing. Powder Technol 310:175–186CrossRefGoogle Scholar
  56. Zheng QJ, Zhou ZY, Yu AB (2013) Contact forces between viscoelastic ellipsoidal particles. Powder Technol 248(2):25–33CrossRefGoogle Scholar
  57. Zhong W, Yu A, Liu X et al (2016) DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol 302:108–152CrossRefGoogle Scholar
  58. Zhu Z, Chen H, Xu W et al (2014) Parking simulation of three-dimensional multi-sized star-shaped particles. Model Simul Mater Sci Eng 22(3):035008CrossRefGoogle Scholar
  59. Williams JR, O’Connor R (1995) A linear complexity intersection algorithm for discrete element simulation of arbitrary geometries. Eng Comput 12:185–201CrossRefGoogle Scholar
  60. Zhao S, Zhao J (2019) A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int J Numer Anal Meth Geomech 43:2147–2169CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations