Advertisement

Introduction

  • Shunying JiEmail author
  • Lu Liu
Chapter
  • 24 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Generally, granular materials consist of a large number of irregularly-shaped particles and form complex granular systems together with surrounding fluid media and structures. Granular systems exhibit complex multi-scale and multi-medium mechanical properties.

References

  1. Abe S, van Gent H, Urai JL (2011) DEM simulation of normal faults in cohesive materials. Tectonophysics 512:12–21CrossRefGoogle Scholar
  2. Afrasiabi N, Rafiee R, Noroozi M (2019) Investigating the effect of discontinuity geometrical parameters on the TBM performance in hard rock. Tunn Undergr Space Technol 84:326–333CrossRefGoogle Scholar
  3. Bagnold RA (1954) Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225(1160):49–63Google Scholar
  4. Bartsch P, Zunft S (2019) Granular flow around the horizontal tubes of a particle heat exchanger: DEM-simulation and experimental validation. Sol Energy 182:48–56CrossRefGoogle Scholar
  5. Bock S, Prusek S (2015) Numerical study of pressure on dams in a backfilled mining shaft based on PFC3D code. Comput Geotech 66:230–244CrossRefGoogle Scholar
  6. Burman BC, Meng J, Huang J et al (2018) Quasi-Static rheology of granular media using the static DEM. Int J Geomech 18(12):07018015CrossRefGoogle Scholar
  7. Chung YC, Wu CW, Kuo CY et al (2019) A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress. Appl Math Model 74:540–568MathSciNetCrossRefGoogle Scholar
  8. Cleary PW (2009) Industrial particle flow modeling using discrete element method. Eng Comput 26(6):698–743CrossRefGoogle Scholar
  9. Constant M, Dubois F, Lambrechts J et al (2019) Implementation of an unresolved stabilised FEM–DEM model to solve immersed granular flows. Comput Part Mech 6(2):213–226CrossRefGoogle Scholar
  10. Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRefGoogle Scholar
  11. Das SK, Das A (2019) Influence of quasi-static loading rates on crushable granular materials: A DEM analysis. Powder Technol 344:393–403CrossRefGoogle Scholar
  12. DEM Solutions Ltd (2008) EDEM discrete element code. Edinburgh, UKGoogle Scholar
  13. Dorostkar O, Carmeliet J (2018) Potential energy as metric for understanding stick–slip dynamics in sheared granular fault gouge: a coupled CFD–DEM study. Rock Mech Rock Eng 51(10):3281–3294CrossRefGoogle Scholar
  14. Forgber T, Radl S (2017) Heat transfer rates in wall bounded shear flows near the jamming point accompanied by fluid-particle heat exchange. Powder Technol 315:182–193CrossRefGoogle Scholar
  15. Galindo-Torres SA, Pedroso DM, Williams DJ et al (2012) Breaking processes in three-dimensional bonded granular materials with general shapes. Comput Phys Commun 183(2):266–277CrossRefGoogle Scholar
  16. Galindo-Torres SA (2013) A coupled discrete element Lattice Boltzmann method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265(2):107–119MathSciNetzbMATHCrossRefGoogle Scholar
  17. Goniva C, Kloss C, Deen NG et al (2012) Influence of rolling friction on single spout fluidized bed simulation. Particuology 10:582–591CrossRefGoogle Scholar
  18. Hilton JE, Cleary PW (2014) Comparison of non-cohesive resolved and coarse grain DEM models for gas flow through particle beds. Appl Math Model 38:4197–4214MathSciNetzbMATHCrossRefGoogle Scholar
  19. Itasca Consulting Group (2004) Particle Flow Code in 3 Dimensions. Online ManualGoogle Scholar
  20. Iwashita K, Oda (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109(1–3):192–205CrossRefGoogle Scholar
  21. Janssen HA (1895) Test on grain pressure silos. Z. Ver Dtsch Ing 39:1045–1049Google Scholar
  22. Ji S, Wang S (2018) A coupled discrete–finite element method for the ice-induced vibrations of a conical jacket platform with a Gpu-based parallel algorithm. Int J Comput Methods 1850147MathSciNetzbMATHCrossRefGoogle Scholar
  23. Jonsén P, Pålsson BI, Stener JF et al (2014) A novel method for modelling of interactions between pulp, charge and mill structure in tumbling mills. Miner Eng 63(63):65–72CrossRefGoogle Scholar
  24. Karion A, Hunt ML (2000) Wall stresses in granular Couette flows of mono-sized particles and binary mixtures. Powder Technol 109(1):145–163CrossRefGoogle Scholar
  25. Kozicki J, Donze FV (2009) YADE-OPEN DEM: an open source software using a discrete element method to simulate granular material. Eng Comput 26(7):786–805zbMATHCrossRefGoogle Scholar
  26. Kozicki J, Tejchman J (2018) Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition. Granular Matter 20(3):48CrossRefGoogle Scholar
  27. Kureck H, Govender N, Siegmann E et al (2019) Industrial scale simulations of tablet coating using GPU based DEM: a validation study. Chem Eng Sci 202:462–480CrossRefGoogle Scholar
  28. Masson S, Martinez J (2000) Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol 109(1):164–178CrossRefGoogle Scholar
  29. Munjiza A, Lei Z, Divic V et al (2013) Fracture and fragmentation of thin shells using the combined finite–discrete element method. Int J Numer Meth Eng 95(6):478–498MathSciNetzbMATHCrossRefGoogle Scholar
  30. Oda M, Kazama H (1998) Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48(4):465–481CrossRefGoogle Scholar
  31. Pouliquen O, Forterre Y (2002) Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J Fluid Mech 453(453):133–151zbMATHCrossRefGoogle Scholar
  32. Sandlin M, Abdel-Khalik SI (2018) A study of granular flow through horizontal wire mesh screens for concentrated solar power particle heating receiver applications–Part II: parametric model predictions. Sol Energy 174:1252–1262CrossRefGoogle Scholar
  33. Shi Y, Sun X, Wang X, et al (2019) Numerical simulation and field tests of minimum-tillage planter with straw smashing and strip laying based on EDEM software. Comput Electr Agric 166:105021CrossRefGoogle Scholar
  34. Stéen EJL, Jørgensen JT, Petersen IN et al (2019) Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine AE-1 for pretargeted PET imaging. Bioorg Med Chem Lett 29(8):986–990CrossRefGoogle Scholar
  35. Takeda S, Ogawa K, Tanigaki K et al (2018) DEM/FEM simulation for impact response of binary granular target and projectile. Eur Phys J Spec Top 227(1–2):73–83CrossRefGoogle Scholar
  36. Thornton C, Antony SJ (2000) Quasi-static shear deformation of a soft particle system. Powder Technol 109(1–3):179–191CrossRefGoogle Scholar
  37. Thornton C, Zhang L (2010) Numerical simulations of the direct shear test. Chem Eng Technol 26(2):153–156CrossRefGoogle Scholar
  38. Vanel L, Clément E (1999) Pressure screening and fluctuations at the bottom of a granular column. Eur Phys J B Condens Matter Complex Syst 11(3):525–533CrossRefGoogle Scholar
  39. Volfson D, Tsimring LS, Aranson IS (2003) Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations. Phys Rev E 68:021301MathSciNetCrossRefGoogle Scholar
  40. Walton OR (1992) Numerical simulation of inclined chute flows of monodisperse, inelastic, frictional spheres. Mech Mater 16(1–2):239–247Google Scholar
  41. Wang S, Fan Y, Ji S (2018) Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol 339:534–549CrossRefGoogle Scholar
  42. Wang S, Ji S (2018) Coupled DEM–FEM analysis of ice-induced vibrations of a conical jacket platform based on the domain decomposition method. Int J Offshore Polar Eng 28(02):190–199MathSciNetCrossRefGoogle Scholar
  43. Washino K, Tan HS, Hounslow MJ et al (2013) A new capillary force model implemented in micro-scale CFD–DEM coupling for wet granulation. Chem Eng Sci 93(4):197–205CrossRefGoogle Scholar
  44. Witt PJ, Sinnott MD, Cleary PW et al (2018) A hierarchical simulation methodology for rotary kilns including granular flow and heat transfer. Miner Eng 119:244–262CrossRefGoogle Scholar
  45. Xu Y, Kafui KD, Thornton C et al (2002) Effects of material properties on granular flow in a silo using DEM simulation. Part Sci Technol 20(2):109–124CrossRefGoogle Scholar
  46. You ZP, Buttlar WG (2004) Discrete element modelling to predict the modulus of asphalt concrete mixtures. J Mater Civ Eng 16(2):140–144CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations