Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond

  • Luoyan AiEmail author
  • Antao Xu
  • Jie XuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)


Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the “primary” activation of multiple oncogenic signaling and the “secondary” induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the “exhausted” T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.


PD-1 PD-L1 T cell inhibition Self-tolerance Cancer immune evasion 


  1. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H et al (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3:1355–1363CrossRefGoogle Scholar
  3. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J et al (2016) Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol: Off J Am Soc Clin Oncol 34:3733–3739CrossRefGoogle Scholar
  5. Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D et al (2014) Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 20:3446–3457CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E et al (2017) PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31:1633–1637CrossRefPubMedPubMedCentralGoogle Scholar
  7. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baas M, Besancon A, Goncalves T, Valette F, Yagita H, Sawitzki B et al (2016) TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. Elife 5:e08133CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barsoum IB, Smallwood CA, Siemens DR, Graham CH (2014) A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 74:665–674CrossRefGoogle Scholar
  11. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24:1852–1858CrossRefGoogle Scholar
  13. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al (2010) The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 116:2286–2294CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24:1655–1661CrossRefGoogle Scholar
  15. Boes M, Meyer-Wentrup F (2015) TLR3 triggering regulates PD-L1 (CD274) expression in human neuroblastoma cells. Cancer Lett 361:49–56CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M et al (2017) MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36:4037–4046CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bretscher PA (1999) A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci USA 96:185–190CrossRefGoogle Scholar
  20. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447CrossRefGoogle Scholar
  21. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR et al (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. Journal of immunology 170:1257–1266. Baltimore, Md: 1950Google Scholar
  22. Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 96:1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  23. Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549:101–105CrossRefPubMedPubMedCentralGoogle Scholar
  24. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209Google Scholar
  26. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231. New York, NYGoogle Scholar
  27. Cerezo M, Guemiri R, Druillennec S, Girault I, Malka-Mahieu H, Shen S et al (2018) Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med 24:1877–1886CrossRefGoogle Scholar
  28. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71(606–620):e7Google Scholar
  29. Chang TT, Jabs C, Sobel RA, Kuchroo VK, Sharpe AH (1999) Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J Exp Med 190:733–740CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954. Baltimore, Md: 1950Google Scholar
  33. Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, Byers LA et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S et al (2015) Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 10:910–923CrossRefGoogle Scholar
  35. Chen N, Fang W, Lin Z, Peng P, Wang J, Zhan J et al (2017) KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol Immunother 66:1175–1187CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W et al (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cioffi M, Trabulo SM, Vallespinos M, Raj D, Kheir TB, Lin ML et al (2017) The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget 8:21609–21625CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB et al (2019) Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 25:477–486CrossRefPubMedPubMedCentralGoogle Scholar
  39. Coelho MA, de Carne TS, Rana S, Zecchin D, Moore C, Molina-Arcas M et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(1083–1099):e6Google Scholar
  40. Cole JE, Navin TJ, Cross AJ, Goddard ME, Alexopoulou L, Mitra AT et al (2011) Unexpected protective role for toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci USA 108:2372–2377CrossRefGoogle Scholar
  41. Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR et al (2016) Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer. Cancer Res 76:1031–1043CrossRefGoogle Scholar
  42. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y et al (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108Google Scholar
  43. Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE et al (2014) Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 40:289–302CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362. New York, NYGoogle Scholar
  45. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567CrossRefGoogle Scholar
  46. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354CrossRefGoogle Scholar
  47. de Kleijn S, Langereis JD, Leentjens J, Kox M, Netea MG, Koenderman L et al (2013) IFN-gamma-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS ONE 8:e72249CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369CrossRefGoogle Scholar
  49. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefGoogle Scholar
  50. Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370CrossRefPubMedPubMedCentralGoogle Scholar
  51. Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J et al (2002) Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9:133–145CrossRefPubMedPubMedCentralGoogle Scholar
  52. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306CrossRefGoogle Scholar
  54. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714CrossRefGoogle Scholar
  55. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964. New York, NYGoogle Scholar
  56. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA et al (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19:1189–1201CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gato-Canas M, Zuazo M, Arasanz H, Ibanez-Vea M, Lorenzo L, Fernandez-Hinojal G et al (2017) PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep 20:1818–1829CrossRefGoogle Scholar
  58. Gauen LK, Zhu Y, Letourneur F, Hu Q, Bolen JB, Matis LA et al (1994) Interactions of p59fyn and ZAP-70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol Cell Biol 14:3729–3741CrossRefPubMedPubMedCentralGoogle Scholar
  59. George J, Saito M, Tsuta K, Iwakawa R, Shiraishi K, Scheel AH et al (2017) Genomic amplification of CD274 (PD-L1) in small-cell lung cancer. Clin Cancer Res 23:1220–1226CrossRefGoogle Scholar
  60. Gong AY, Zhou R, Hu G, Li X, Splinter PL, O’Hara SP et al (2009) MicroRNA-513 regulates B7-H1 translation and is involved in IFN-gamma-induced B7-H1 expression in cholangiocytes. J Immunol 182:1325–1333. Baltimore, Md: 1950Google Scholar
  61. Gong AY, Zhou R, Hu G, Liu J, Sosnowska D, Drescher KM et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201:160–169CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499CrossRefPubMedPubMedCentralGoogle Scholar
  63. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268-3277Google Scholar
  64. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144CrossRefPubMedPubMedCentralGoogle Scholar
  65. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567CrossRefPubMedPubMedCentralGoogle Scholar
  66. Honda T, Egen JG, Lammermann T, Kastenmuller W, Torabi-Parizi P, Germain RN (2014) Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–247CrossRefPubMedPubMedCentralGoogle Scholar
  67. Huang G, Wen Q, Zhao Y, Gao Q, Bai Y (2013) NF-kappaB plays a key role in inducing CD274 expression in human monocytes after lipopolysaccharide treatment. PLoS ONE 8:e61602CrossRefPubMedPubMedCentralGoogle Scholar
  68. Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan PK et al (2019) A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat Med 25:454–461CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433. New York, NYGoogle Scholar
  70. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895CrossRefPubMedPubMedCentralGoogle Scholar
  71. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297CrossRefPubMedPubMedCentralGoogle Scholar
  72. James ES, Harney S, Wordsworth BP, Cookson WO, Davis SJ, Moffatt MF (2005) PDCD1: a tissue-specific susceptibility locus for inherited inflammatory disorders. Genes Immun 6:430–437CrossRefGoogle Scholar
  73. Jia L, Xi Q, Wang H, Zhang Z, Liu H, Cheng Y et al (2017) miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun 488:425–431CrossRefGoogle Scholar
  74. Jiang X, Zhou J, Giobbie-Hurder A, Wargo J, Hodi FS (2013) The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 19:598–609CrossRefGoogle Scholar
  75. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354CrossRefGoogle Scholar
  76. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL et al (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423–1427. New York, NYGoogle Scholar
  77. Kao SC, Cheng YY, Williams M, Kirschner MB, Madore J, Lum T et al (2017) Tumor suppressor microRNAs contribute to the regulation of PD-L1 Expression in malignant pleural mesothelioma. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 12:1421–1433CrossRefGoogle Scholar
  78. Karakhanova S, Meisel S, Ring S, Mahnke K, Enk AH (2010) ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol 40:254–266CrossRefGoogle Scholar
  79. Karakhanova S, Bedke T, Enk AH, Mahnke K (2011) IL-27 renders DC immunosuppressive by induction of B7-H1. J Leukoc Biol 89:837–845CrossRefGoogle Scholar
  80. Kataoka K, Shiraishi Y, Takeda Y, Sakata S, Matsumoto M, Nagano S et al (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534:402–406CrossRefGoogle Scholar
  81. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895CrossRefPubMedPubMedCentralGoogle Scholar
  82. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefGoogle Scholar
  83. Kim EY, Kim A, Kim SK, Chang YS (2017) MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 110:63–67CrossRefGoogle Scholar
  84. Koh J, Jang JY, Keam B, Kim S, Kim MY, Go H et al (2016) EML4-ALK enhances programmed cell death-ligand 1 expression in pulmonary adenocarcinoma via hypoxia-inducible factor (HIF)-1alpha and STAT3. Oncoimmunology 5:e1108514CrossRefGoogle Scholar
  85. Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al (2010) Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes. Blood 116:1124–1131CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kroemer G, Galluzzi L, Zitvogel L, Fridman WH (2015) Colorectal cancer: the first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology 4:e1058597CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR et al (2016) Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 76:227–238CrossRefPubMedPubMedCentralGoogle Scholar
  88. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268CrossRefGoogle Scholar
  89. Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M et al (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101:10691–10696CrossRefGoogle Scholar
  90. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520CrossRefPubMedPubMedCentralGoogle Scholar
  91. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK et al (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–413. New York, NYGoogle Scholar
  92. Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM et al (2006) Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580:755–762CrossRefGoogle Scholar
  93. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632CrossRefPubMedPubMedCentralGoogle Scholar
  94. Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J et al (2018) Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33(187–201):e10Google Scholar
  95. Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y et al (2016) Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30:925–939CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lin DY, Tanaka Y, Iwasaki M, Gittis AG, Su HP, Mikami B et al (2008) The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA 105:3011–3016CrossRefGoogle Scholar
  97. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304CrossRefGoogle Scholar
  98. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51CrossRefPubMedPubMedCentralGoogle Scholar
  99. Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22:1499–1509CrossRefGoogle Scholar
  100. Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci USA 100:5336–5341CrossRefGoogle Scholar
  101. Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C et al (2019) Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364:485–491. New York, NYGoogle Scholar
  102. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M et al (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA 105:20852–20857CrossRefGoogle Scholar
  103. Matta BM, Raimondi G, Rosborough BR, Sumpter TL, Thomson AW (2012) IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol 188:5227–5237. Baltimore, Md: 1950Google Scholar
  104. Mazanet MM, Hughes CC (2002) B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J Immunol 169:3581–3588. Baltimore, Md: 1950Google Scholar
  105. McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495CrossRefPubMedPubMedCentralGoogle Scholar
  106. Meng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, et al (2018) FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature 564:130–135 Google Scholar
  107. Messai Y, Gad S, Noman MZ, Le Teuff G, Couve S, Janji B et al (2016) Renal cell carcinoma programmed death-ligand 1, a new direct target of hypoxia-inducible factor-2 alpha, is regulated by von Hippel-Lindau gene mutation status. Eur Urol 70:623–632CrossRefPubMedGoogle Scholar
  108. Mezzadra R, Sun C, Jae LT, Gomez-Eerland R, de Vries E, Wu W et al (2017) Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549:106–110CrossRefPubMedPubMedCentralGoogle Scholar
  109. Nagarsheth N, Peng D, Kryczek I, Wu K, Li W, Zhao E et al (2016) PRC2 Epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res 76:275–282CrossRefPubMedGoogle Scholar
  110. Nakazawa A, Dotan I, Brimnes J, Allez M, Shao L, Tsushima F et al (2004) The expression and function of costimulatory molecules B7H and B7-H1 on colonic epithelial cells. Gastroenterology 126:1347–1357CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ni XY, Sui HX, Liu Y, Ke SZ, Wang YN, Gao FG (2012) TGF-beta of lung cancer microenvironment upregulates B7H1 and GITRL expression in dendritic cells and is associated with regulatory T cell generation. Oncol Rep 28:615–621CrossRefGoogle Scholar
  112. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62:492–497CrossRefGoogle Scholar
  113. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151CrossRefGoogle Scholar
  114. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322. New York, NYGoogle Scholar
  115. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790CrossRefPubMedPubMedCentralGoogle Scholar
  116. Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ (2015) Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212:1125–1137CrossRefPubMedPubMedCentralGoogle Scholar
  117. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824CrossRefPubMedPubMedCentralGoogle Scholar
  118. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871CrossRefPubMedPubMedCentralGoogle Scholar
  119. Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483CrossRefPubMedPubMedCentralGoogle Scholar
  120. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218CrossRefGoogle Scholar
  121. O’Sullivan D, Pearce EL (2015) Targeting T cell metabolism for therapy. Trends Immunol 36:71–80CrossRefPubMedPubMedCentralGoogle Scholar
  122. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J et al (2015) Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 21:4014–4021CrossRefGoogle Scholar
  123. Ou JN, Wiedeman AE, Stevens AM (2012) TNF-alpha and TGF-beta counter-regulate PD-L1 expression on monocytes in systemic lupus erythematosus. Sci Rep 2:295CrossRefPubMedPubMedCentralGoogle Scholar
  124. Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J et al (2016) TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov 6:1366–1381CrossRefPubMedPubMedCentralGoogle Scholar
  125. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553CrossRefPubMedPubMedCentralGoogle Scholar
  126. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88CrossRefGoogle Scholar
  127. Patel SA, Minn AJ (2018) Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity 48:417–433CrossRefPubMedPubMedCentralGoogle Scholar
  128. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46Google Scholar
  129. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098CrossRefPubMedPubMedCentralGoogle Scholar
  130. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692CrossRefPubMedPubMedCentralGoogle Scholar
  131. Peng D, Kryczek I, Nagarsheth N, Zhao L, Wei S, Wang W et al (2015) Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527:249–253CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B et al (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44:1255–1269CrossRefPubMedPubMedCentralGoogle Scholar
  133. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(414–427):e13Google Scholar
  134. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMedPubMedCentralGoogle Scholar
  135. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669CrossRefGoogle Scholar
  136. Qian Y, Deng J, Geng L, Xie H, Jiang G, Zhou L et al (2008) TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest 26:816–821CrossRefGoogle Scholar
  137. Quandt D, Jasinski-Bergner S, Muller U, Schulze B, Seliger B (2014) Synergistic effects of IL-4 and TNFα on the induction of B7-H1 in renal cell carcinoma cells inhibiting allogeneic T cell proliferation. J Transl Med 12:151CrossRefPubMedPubMedCentralGoogle Scholar
  138. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. New York, NYGoogle Scholar
  139. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229:114–125CrossRefPubMedPubMedCentralGoogle Scholar
  140. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. New York, NYGoogle Scholar
  141. Robert C (2018) Is earlier better for melanoma checkpoint blockade? Nat Med 24:1645–1648CrossRefGoogle Scholar
  142. Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al (2016) PD-L1 and PD-L2 genetic alterations define classical hodgkin lymphoma and predict outcome. J Clin Oncol: Off J Am Soc Clin Oncol 34:2690–2697CrossRefGoogle Scholar
  143. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–326CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543CrossRefGoogle Scholar
  146. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, Lopez-Janeiro A, Porciuncula A, Idoate MA et al (2019) Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med 25:470–476CrossRefGoogle Scholar
  147. Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45:374–388CrossRefPubMedPubMedCentralGoogle Scholar
  148. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44:955–972CrossRefPubMedPubMedCentralGoogle Scholar
  149. Schoop R, Wahl P, Le Hir M, Heemann U, Wang M, Wuthrich RP (2004) Suppressed T-cell activation by IFN-gamma-induced expression of PD-L1 on renal tubular epithelial cells. Nephrol Dial Transplant 19:2713–2720CrossRefGoogle Scholar
  150. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. New York, NYGoogle Scholar
  151. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167CrossRefGoogle Scholar
  152. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41CrossRefPubMedPubMedCentralGoogle Scholar
  153. Singal G, Miller PG, Agarwala V, Li G, Kaushik G, Backenroth D et al (2019) Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database. JAMA 321:1391–1399CrossRefPubMedPubMedCentralGoogle Scholar
  154. Song M, Chen D, Lu B, Wang C, Zhang J, Huang L et al (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 8:e65821CrossRefPubMedPubMedCentralGoogle Scholar
  155. Song S, Yuan P, Wu H, Chen J, Fu J, Li P et al (2014) Dendritic cells with an increased PD-L1 by TGF-beta induce T cell anergy for the cytotoxicity of hepatocellular carcinoma cells. Int Immunopharmacol 20:117–123CrossRefGoogle Scholar
  156. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523:231–235CrossRefGoogle Scholar
  157. Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ et al (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611CrossRefGoogle Scholar
  158. Starke A, Wuthrich RP, Waeckerle-Men Y (2007) TGF-beta treatment modulates PD-L1 and CD40 expression in proximal renal tubular epithelial cells and enhances CD8 cytotoxic T-cell responses. Nephron Exp Nephrol 107:e22–e29CrossRefGoogle Scholar
  159. Straub M, Drecoll E, Pfarr N, Weichert W, Langer R, Hapfelmeier A et al (2016) CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity. Oncotarget 7:12024–12034CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sugiura D, Maruhashi T, Okazaki IM, Shimizu K, Maeda TK, Takemoto T et al (2019) Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science 364:558–566. New York, NYGoogle Scholar
  161. Sumimoto H, Takano A, Teramoto K, Daigo Y (2016) RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS ONE 11:e0166626CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM et al (2015) IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Can Res 75:1635–1644CrossRefGoogle Scholar
  163. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48:434–452CrossRefGoogle Scholar
  164. Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE (2016) Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity 44:274–286CrossRefPubMedPubMedCentralGoogle Scholar
  165. Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N et al (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Can Res 71:5393–5399CrossRefGoogle Scholar
  166. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101:17174–17179CrossRefGoogle Scholar
  167. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454CrossRefPubMedPubMedCentralGoogle Scholar
  168. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol: Off J Am Soc Clin Oncol 32:1020–1030CrossRefGoogle Scholar
  169. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571CrossRefPubMedPubMedCentralGoogle Scholar
  170. Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL et al (2014) Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 123:2062–2065CrossRefGoogle Scholar
  171. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T (2005) Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 102:11823–11828CrossRefGoogle Scholar
  172. Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F et al (2010) PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 22:443–452CrossRefGoogle Scholar
  173. Wang W, Li F, Mao Y, Zhou H, Sun J, Li R et al (2013) A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. Hum Genet 132:641–648CrossRefGoogle Scholar
  174. Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y et al (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27:443–452CrossRefGoogle Scholar
  175. Wang J, Jia Y, Zhao S, Zhang X, Wang X, Han X et al (2017a) BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene 36:6235–6243CrossRefGoogle Scholar
  176. Wang X, Yang L, Huang F, Zhang Q, Liu S, Ma L et al (2017b) Inflammatory cytokines IL-17 and TNF-alpha up-regulate PD-L1 expression in human prostate and colon cancer cells. Immunol Lett 184:7–14CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wang H, Yao H, Li C, Shi H, Lan J, Li Z et al (2018) HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem BiolGoogle Scholar
  178. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R et al (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci USA 110:E2480–E2489CrossRefGoogle Scholar
  179. Weichselbaum RR, Liang H, Deng L, Fu YX (2017) Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol 14:365–379CrossRefGoogle Scholar
  180. Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R et al (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467PubMedGoogle Scholar
  181. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133CrossRefPubMedPubMedCentralGoogle Scholar
  182. Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM et al (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943–959CrossRefPubMedPubMedCentralGoogle Scholar
  183. Xie G, Li W, Li R, Wu K, Zhao E, Zhang Y et al (2017) Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells. PLoS ONE 12:e0168822CrossRefPubMedPubMedCentralGoogle Scholar
  184. Xiong HY, Ma TT, Wu BT, Lin Y, Tu ZG (2014) IL-12 regulates B7-H1 expression in ovarian cancer-associated macrophages by effects on NF-kappaB signalling. Asian Pac J Cancer Prev: APJCP 15:5767–5772CrossRefGoogle Scholar
  185. Xu C, Fillmore CM, Koyama S, Wu H, Zhao Y, Chen Z et al (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25:590–604CrossRefPubMedPubMedCentralGoogle Scholar
  186. Xue J, Chen C, Qi M, Huang Y, Wang L, Gao Y et al (2017) Type Igamma phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF-kappaB. Oncotarget 8:42414–42427PubMedPubMedCentralGoogle Scholar
  187. Yamamoto R, Nishikori M, Tashima M, Sakai T, Ichinohe T, Takaori-Kondo A et al (2009) B7-H1 expression is regulated by MEK/ERK signaling pathway in anaplastic large cell lymphoma and Hodgkin lymphoma. Cancer Sci 100:2093–2100CrossRefPubMedGoogle Scholar
  188. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538-5545. Baltimore, Md: 1950Google Scholar
  189. Yang Y, Hsu JM, Sun L, Chan LC, Li CW, Hsu JL et al (2019) Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res 29:83–86CrossRefGoogle Scholar
  190. Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H et al (2019) Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 3:306–317CrossRefGoogle Scholar
  191. Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res 23:3158–3167CrossRefGoogle Scholar
  192. Yee D, Shah KM, Coles MC, Sharp TV, Lagos D (2017) MicroRNA-155 induction via TNF-alpha and IFN-gamma suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J Biol Chem 292:20683–20693CrossRefPubMedPubMedCentralGoogle Scholar
  193. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217CrossRefPubMedPubMedCentralGoogle Scholar
  194. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S et al (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol 17:1283–1294CrossRefPubMedPubMedCentralGoogle Scholar
  195. Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412CrossRefPubMedPubMedCentralGoogle Scholar
  196. Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23:2341–2348CrossRefPubMedPubMedCentralGoogle Scholar
  197. Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zhang X, Zeng Y, Qu Q, Zhu J, Liu Z, Ning W et al (2017) PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. Int J Clin Oncol 22:1026–1033CrossRefPubMedPubMedCentralGoogle Scholar
  199. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT et al (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91–95CrossRefGoogle Scholar
  200. Zhao Q, Xiao X, Wu Y, Wei Y, Zhu LY, Zhou J et al (2011) Interleukin-17-educated monocytes suppress cytotoxic T-cell function through B7-H1 in hepatocellular carcinoma patients. Eur J Immunol 41:2314–2322CrossRefGoogle Scholar
  201. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Medical Oncology, Zhongshan HospitalFudan UniversityShanghaiChina
  2. 2.Department of Rheumatology, Renji HospitalShanghai Jiaotong UniversityShanghaiChina
  3. 3.Institutes of Biomedical Sciences, Zhongshan-Xuhui HospitalFudan UniversityShanghaiChina

Personalised recommendations