Advertisement

Phosphorylation: A Fast Switch For Checkpoint Signaling

  • Yiting Wang
  • Ping Wang
  • Jie XuEmail author
Chapter
  • 155 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)

Abstract

Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.

Keywords

Phosphorylation Tyrosine kinase PTM Cancer immunity 

References

  1. Ahmad I, Hoessli DC, Walker-Nasir E, Choudhary MI, Rafik SM, Shakoori AR et al (2006) Phosphorylation and glycosylation interplay: protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family. J Cell Biochem 99(3):706–718CrossRefGoogle Scholar
  2. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C et al (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science (New York, NY) 318(5853):1141–1143CrossRefGoogle Scholar
  3. Andreae S, Buisson S, Triebel F (2003) MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 102(6):2130–2137CrossRefGoogle Scholar
  4. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772CrossRefGoogle Scholar
  5. Arulraj T, Barik D (2018) Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS ONE 13(10):e0206232CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A et al (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403(6766):211–216CrossRefGoogle Scholar
  7. Bae J, Lee SJ, Park CG, Lee YS, Chun T (2014) Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol (Baltimore, Md, 1950) 193(6):3101–3112Google Scholar
  8. Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M et al (2007) Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J: Off Publ Fed Am Soc Exp Biol 21(10):2442–2454CrossRefGoogle Scholar
  9. Baroja ML, Luxenberg D, Chau T, Ling V, Strathdee CA, Carreno BM et al (2000) The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J Immunol (Baltimore, Md, 1950) 164(1):49–55Google Scholar
  10. Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V et al (2002) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol (Baltimore, Md, 1950) 168(10):5070–5078Google Scholar
  11. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365CrossRefGoogle Scholar
  12. Bradshaw JD, Lu P, Leytze G, Rodgers J, Schieven GL, Bennett KL et al (1997) Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 36(50):15975–15982CrossRefGoogle Scholar
  13. Brodt P, Gordon J (1978) Anti-tumor immunity in B lymphocyte-deprived mice. I. immunity to a chemically induced tumor. J Immunol (Baltimore, Md, 1950) 121(1):359–62Google Scholar
  14. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13(4):257–269CrossRefGoogle Scholar
  15. Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 96(9):1027–1034CrossRefPubMedPubMedCentralGoogle Scholar
  16. Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211(2):969–980PubMedGoogle Scholar
  17. Byun HJ, Jung WW, Lee DS, Kim S, Kim SJ, Park CG et al (2007) Proliferation of activated CD1d-restricted NKT cells is down-modulated by lymphocyte activation gene-3 signaling via cell cycle arrest in S phase. Cell Biol Int 31(3):257–262CrossRefGoogle Scholar
  18. Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA et al (2001) Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol (Baltimore, Md, 1950) 167(1):553–561Google Scholar
  19. Cannon MJ, Goyne HE, Stone PJ, Macdonald LJ, James LE, Cobos E et al (2013) Modulation of p38 MAPK signaling enhances dendritic cell activation of human CD4+ Th17 responses to ovarian tumor antigen. Cancer Immunol Immunother: CII 62(5):839–849CrossRefGoogle Scholar
  20. Cao X, Zhao Y, Wang J, Dai B, Gentile E, Lin J et al (2017) TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 8(64):107621–107629CrossRefPubMedPubMedCentralGoogle Scholar
  21. Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S et al (2015) IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 6(41):43267–43280CrossRefPubMedPubMedCentralGoogle Scholar
  22. Carbotti G, Nikpoor AR, Vacca P, Gangemi R, Giordano C, Campelli F et al (2017) IL-27 mediates HLA class I up-regulation, which can be inhibited by the IL-6 pathway, in HLA-deficient Small Cell Lung Cancer cells. J Exp Clin Cancer Res: CR 36(1):140CrossRefGoogle Scholar
  23. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71(4):606–20.e7CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chambers CA, Allison JP (1996) The role of tyrosine phosphorylation and PTP-1C in CTLA-4 signal transduction. Eur J Immunol 26(12):3224–3229CrossRefGoogle Scholar
  25. Chattopadhyay S, Chakraborty NG (2009) GITR expression on T-cell receptor-stimulated human CD8 T cell in a JNK-dependent pathway. Indian J Hum Genet 15(3):121–124CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen NH, Cheong KA, Kim CH, Noh M, Lee AY (2013) Glucosamine induces activated T cell apoptosis through reduced T cell receptor. Scand J Immunol 78(1):17–27CrossRefGoogle Scholar
  27. Chen W, Wang J, Jia L, Liu J, Tian Y (2016) Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan. Cell Death Dis 7:e2115CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CG et al (2018) Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers. Mol Carcinog 57(11):1588–1598CrossRefGoogle Scholar
  29. Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ et al (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403(6766):216–220CrossRefGoogle Scholar
  30. Chikuma S, Murakami M, Tanaka K, Uede T (2000) Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J Cell Biochem 78(2):241–250CrossRefGoogle Scholar
  31. Cho HI, Park CG, Kim J (1999) Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 368(2):221–231CrossRefGoogle Scholar
  32. Chou FC, Shieh SJ, Sytwu HK (2009) Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur J Immunol 39(9):2403–2411CrossRefGoogle Scholar
  33. Chuang E, Lee KM, Robbins MD, Duerr JM, Alegre ML, Hambor JE et al (1999) Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J Immunol (Baltimore, Md, 1950) 162(3):1270–1277Google Scholar
  34. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG et al (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13(3):313–322CrossRefGoogle Scholar
  35. Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(6):1083–99.e6CrossRefPubMedPubMedCentralGoogle Scholar
  36. Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25(12):596–601CrossRefGoogle Scholar
  37. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–E130CrossRefGoogle Scholar
  38. Coombs MR, Harrison ME, Hoskin DW (2016) Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 380(2):424–433CrossRefGoogle Scholar
  39. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC et al (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105(6):721–732CrossRefGoogle Scholar
  40. Darvin P, Sasidharan Nair V, Elkord E (2019) PD-L1 expression in human breast cancer stem cells is epigenetically regulated through posttranslational histone modifications. J Oncol. 2019:3958908CrossRefPubMedPubMedCentralGoogle Scholar
  41. Davidson D, Schraven B, Veillette A (2007) PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol Cell Biol 27(5):1960–1973CrossRefPubMedPubMedCentralGoogle Scholar
  42. Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C (2019) HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther 18(5):900–908CrossRefGoogle Scholar
  43. Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F et al (2019) PARP1 Suppresses the Transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res 7(1):136–149CrossRefGoogle Scholar
  44. Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T et al (2017) The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 37(3):1545–1554Google Scholar
  45. Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18(1):92–97CrossRefGoogle Scholar
  46. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348CrossRefGoogle Scholar
  47. Fairbanks G, Palek J, Dino JE, Liu PA (1983) Protein kinases and membrane protein phosphorylation in normal and abnormal human erythrocytes: variation related to mean cell age. Blood 61(5):850–857CrossRefGoogle Scholar
  48. Feng ZM, Guo SM (2016) Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-kappaB pathway and epithelial-mesenchymal transition. Genet Mol Res: GMR 15(3)Google Scholar
  49. Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216(1):121–132PubMedGoogle Scholar
  50. Fischer OM, Streit S, Hart S, Ullrich A (2003) Beyond herceptin and gleevec. Curr Opin Chem Biol 7(4):490–495CrossRefGoogle Scholar
  51. Folkl A, Bienzle D (2010) Structure and function of programmed death (PD) molecules. Vet Immunol Immunopathol 134(1–2):33–38CrossRefGoogle Scholar
  52. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359(Pt 1):1–16CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7(4):e1412909CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gatta L, Calviello G, Di Nicuolo F, Pace L, Ubaldi V, Doria G et al (2002) Cytotoxic T lymphocyte-associated antigen-4 inhibits integrin-mediated stimulation. Immunology 107(2):209–216CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA (2014) Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol 44(9):2703–2711CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gordon J, Holden HT, Segal S, Feldman M (1982) Anti-tumor immunity in B-lymphocyte-deprived mice. III. immunity to primary moloney sarcoma virus-induced tumors. Int J Cancer 29(3):351–7Google Scholar
  57. Gorini G, Harris RA, Mayfield RD (2014) Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 39(1):104–130CrossRefGoogle Scholar
  58. Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E et al (2017) Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2(2):e000213CrossRefPubMedPubMedCentralGoogle Scholar
  59. Grzywnowicz M, Karabon L, Karczmarczyk A, Zajac M, Skorka K, Zaleska J et al (2015) The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma 56(10):2908–2913CrossRefGoogle Scholar
  60. Gu W, Wang L, Wu Y, Liu JP (2019) Undo the brake of tumour immune tolerance with antibodies, peptide mimetics and small molecule compounds targeting PD-1/PD-L1 checkpoint at different locations for acceleration of cytotoxic immunity to cancer cells. Clin Exp Pharmacol Physiol 46(2):105–115CrossRefGoogle Scholar
  61. Guerra N, Guillard M, Angevin E, Echchakir H, Escudier B, Moretta A et al (2000) Killer inhibitory receptor (CD158b) modulates the lytic activity of tumor-specific T lymphocytes infiltrating renal cell carcinomas. Blood 95(9):2883–2889CrossRefGoogle Scholar
  62. Guerra N, Michel F, Gati A, Gaudin C, Mishal Z, Escudier B et al (2002) Engagement of the inhibitory receptor CD158a interrupts TCR signaling, preventing dynamic membrane reorganization in CTL/tumor cell interaction. Blood 100(8):2874–2881CrossRefGoogle Scholar
  63. Guntermann C, Alexander DR (2002) CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol (Baltimore, Md, 1950) 168(9):4420–4429Google Scholar
  64. Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z et al (2018) Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol 9:1118CrossRefPubMedPubMedCentralGoogle Scholar
  65. Guo R, Li Y, Wang Z, Bai H, Duan J, Wang S et al (2019) Hypoxia-inducible factor-1alpha and nuclear factor-kappaB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer SciGoogle Scholar
  66. Hanabuchi S, Watanabe N, Wang YH, Wang YH, Ito T, Shaw J et al (2006) Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 107(9):3617–3623CrossRefGoogle Scholar
  67. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  68. Hao Y, Chapuy B, Monti S, Sun HH, Rodig SJ, Shipp MA (2014) Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res: Off J Am Assoc Cancer Res 20(10):2674–2683CrossRefGoogle Scholar
  69. Henel G, Singh K, Cui D, Pryshchep S, Lee WW, Weyand CM et al (2006) Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. Blood 107(11):4449–4457CrossRefPubMedPubMedCentralGoogle Scholar
  70. Henson SM, Macaulay R, Franzese O, Akbar AN (2012) Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology 135(4):355–363CrossRefPubMedPubMedCentralGoogle Scholar
  71. Hildebrand D, Uhle F, Sahin D, Krauser U, Weigand MA, Heeg K (2018) The interplay of notch signaling and STAT3 in TLR-activated human primary monocytes. Front Cell Infect Microbiol 8:241CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hoff H, Kolar P, Ambach A, Radbruch A, Brunner-Weinzierl MC (2010) CTLA-4 (CD152) inhibits T cell function by activating the ubiquitin ligase Itch. Mol Immunol 47(10):1875–1881CrossRefGoogle Scholar
  73. Horita H, Law A, Hong S, Middleton K (2017) Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia (New York, NY) 19(4):346–353CrossRefGoogle Scholar
  74. Hsu JM, Li CW, Lai YJ, Hung MC (2018) Posttranslational modifications of PD-L1 and their applications in cancer therapy. Can Res 78(22):6349–6353CrossRefGoogle Scholar
  75. Hu H, Rudd CE, Schneider H (2001) Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem Biophys Res Commun 288(3):573–578CrossRefGoogle Scholar
  76. Hu J, Batth IS, Xia X, Li S (2016) Regulation of NKG2D(+)CD8(+) T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 5(12):e1252012CrossRefPubMedPubMedCentralGoogle Scholar
  77. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503–513CrossRefGoogle Scholar
  78. Huang CT, Chang MC, Chen YL, Chen TC, Chen CA, Cheng WF (2015) Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation. Cancer Lett 359(1):117–126CrossRefGoogle Scholar
  79. Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26(12):676–687CrossRefGoogle Scholar
  80. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236CrossRefGoogle Scholar
  81. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al (2015) Control of PI(3) kinase in T reg cells maintains homeostasis and lineage stability. Nat Immunol 16(2):188–196CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ingram VM (1995) Alzheimer tangles and abnormal phosphorylation. Science (New York, NY) 267(5206):1889–1890CrossRefGoogle Scholar
  83. Jeffery HC, Jeffery LE, Lutz P, Corrigan M, Webb GJ, Hirschfield GM et al (2017) Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol 188(3):394–411CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ji HB, Liao G, Faubion WA, Abadia-Molina AC, Cozzo C, Laroux FS et al (2004) Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol (Baltimore, Md, 1950) 172(10):5823–5827Google Scholar
  85. Jiang X, Yu J, Shi Q, Xiao Y, Wang W, Chen G et al (2015) Tim-3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages. Clin Immunol (Orlando, Fla) 160(2):328–335CrossRefGoogle Scholar
  86. Jin X, Ding D, Yan Y, Li H, Wang B, Ma L et al (2019) Phosphorylated RB promotes cancer immunity by inhibiting NF-kappaB activation and PD-L1 expression. Mol Cell 73(1):22–35.e6CrossRefGoogle Scholar
  87. Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB et al (2018) T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res: Off J Am Assoc Cancer Res 24(4):870–881CrossRefGoogle Scholar
  88. Kamijo H, Miyagaki T, Shishido-Takahashi N, Nakajima R, Oka T, Suga H et al (2018) Aberrant CD137 ligand expression induced by GATA6 overexpression promotes tumor progression in cutaneous T-cell lymphoma. Blood 132(18):1922–1935CrossRefGoogle Scholar
  89. Khan AN, Tomasi TB (2008) Histone deacetylase regulation of immune gene expression in tumor cells. Immunol Res 40(2):164–178CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kim YJ, Stringfield TM, Chen Y, Broxmeyer HE (2005) Modulation of cord blood CD8+ T-cell effector differentiation by TGF-beta1 and 4-1BB costimulation. Blood 105(1):274–281CrossRefGoogle Scholar
  91. Kim DK, Lee SC, Lee HW (2009) CD137 ligand-mediated reverse signals increase cell viability and cytokine expression in murine myeloid cells: involvement of mTOR/p70S6 kinase and Akt. Eur J Immunol 39(9):2617–2628CrossRefGoogle Scholar
  92. Kim JD, Lee EA, Quang NN, Cho HR, Kwon B (2011) Recombinant TAT-CD137 ligand cytoplasmic domain fusion protein induces the production of IL-6 and TNF-alpha in peritoneal macrophages. Immune Netw 11(4):216–222CrossRefPubMedPubMedCentralGoogle Scholar
  93. Knieke K, Lingel H, Chamaon K, Brunner-Weinzierl MC (2012) Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation. PLoS ONE 7(3):e31391CrossRefPubMedPubMedCentralGoogle Scholar
  94. Koguchi K, Anderson DE, Yang L, O’Connor KC, Kuchroo VK, Hafler DA (2006) Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med 203(6):1413–1418CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kojima R, Ohno T, Iikura M, Niki T, Hirashima M, Iwaya K et al (2014) Galectin-9 enhances cytokine secretion, but suppresses survival and degranulation, in human mast cell line. PLoS ONE 9(1):e86106CrossRefPubMedPubMedCentralGoogle Scholar
  96. Kondo K, Shaim H, Thompson PA, Burger JA, Keating M, Estrov Z et al (2018) Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia 32(4):960–970CrossRefGoogle Scholar
  97. Kwon H, Jun HS, Khil LY, Yoon JW (2004) Role of CTLA-4 in the activation of single-and double-positive thymocytes. J Immunol (Baltimore, Md, 1950) 173(11):6645–6653Google Scholar
  98. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268CrossRefGoogle Scholar
  99. Lazrek Y, Dubreuil O, Garambois V, Gaborit N, Larbouret C, Le Clorennec C et al (2013) Anti-HER3 domain 1 and 3 antibodies reduce tumor growth by hindering HER2/HER3 dimerization and AKT-induced MDM2, XIAP, and FoxO1 phosphorylation. Neoplasia (New York, NY) 15(3):335–347CrossRefGoogle Scholar
  100. LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103(5):1787–1790CrossRefGoogle Scholar
  101. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W et al (1998) Molecular basis of T cell inactivation by CTLA-4. Science (New York, NY) 282(5397):2263–2266CrossRefGoogle Scholar
  102. Lee SJ, Long M, Adler AJ, Mittler RS, Vella AT (2009) The IKK-neutralizing compound Bay11 kills supereffector CD8 T cells by altering caspase-dependent activation-induced cell death. J Leukoc Biol 85(1):175–185CrossRefGoogle Scholar
  103. Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY et al (2016) CD44+ Cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res: Off J Am Assoc Cancer Res 22(14):3571–3581CrossRefGoogle Scholar
  104. Leng Q, Bentwich Z, Borkow G (2006) Increased TGF-beta, Cbl-b and CTLA-4 levels and immunosuppression in association with chronic immune activation. Int Immunol 18(5):637–644CrossRefGoogle Scholar
  105. Levene PAAC (1906) The cleavage products of vitellin. J Biol Chem 2:127–133Google Scholar
  106. Li D, Gal I, Vermes C, Alegre ML, Chong AS, Chen L et al (2004) Cutting edge: Cbl-b: one of the key molecules tuning CD28- and CTLA-4-mediated T cell costimulation. J Immunol (Baltimore, Md, 1950) 173(12):7135–7139Google Scholar
  107. Li Y, Feng J, Geng S, Geng S, Wei H, Chen G et al (2011) The N- and C-terminal carbohydrate recognition domains of galectin-9 contribute differently to its multiple functions in innate immunity and adaptive immunity. Mol Immunol 48(4):670–677CrossRefGoogle Scholar
  108. Li J, Andreyev O, Chen M, Marco M, Iwase H, Long C et al (2013) Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cell Immunol 285(1–2):23–30CrossRefGoogle Scholar
  109. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW et al (2016a) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632CrossRefPubMedPubMedCentralGoogle Scholar
  110. Li J, Shayan G, Avery L, Jie HB, Gildener-Leapman N, Schmitt N et al (2016b) Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: evidence for intracellular cross talk. Oncoimmunology 5(10):e1200778CrossRefPubMedPubMedCentralGoogle Scholar
  111. Li H, Li X, Liu S, Guo L, Zhang B, Zhang J et al (2017) Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology (Baltimore, MD) 66(6):1920–1933CrossRefGoogle Scholar
  112. Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clinical cancer research: an official journal of the American Association for Cancer Research. 11(9):3163–3169CrossRefGoogle Scholar
  113. Lin PL, Wu TC, Wu DW, Wang L, Chen CY, Lee H (2017) An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non-small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer (Oxford, England: 1990) 85:95–105Google Scholar
  114. Liu B, Li Z, Mahesh SP, Pantanelli S, Hwang FS, Siu WO et al (2008) Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 283(13):8202–8210CrossRefPubMedPubMedCentralGoogle Scholar
  115. Liu Q, Zhou H, Langdon WY, Zhang J (2014) E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle (Georgetown, Tex) 13(12):1875–1884CrossRefGoogle Scholar
  116. Liu S, Chen S, Yuan W, Wang H, Chen K, Li D et al (2017a) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8(59):99901–99912PubMedPubMedCentralGoogle Scholar
  117. Liu Z, Zhao Y, Fang J, Cui R, Xiao Y, Xu Q (2017b) SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells. Oncotarget 8(32):53518–53530PubMedPubMedCentralGoogle Scholar
  118. Liu J, Yang Y, Wang H, Wang B, Zhao K, Jiang W et al (2018) Syntenin1/MDA-9 (SDCBP) induces immune evasion in triple-negative breast cancer by upregulating PD-L1. Breast Cancer Res Treat 171(2):345–357CrossRefGoogle Scholar
  119. Loughrey Chen S, Huddleston MJ, Shou W, Deshaies RJ, Annan RS, Carr SA (2002) Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol Cell Proteomics 1(3):186–196CrossRefGoogle Scholar
  120. Mackay F, Kalled SL (2002) TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol 14(6):783–790CrossRefGoogle Scholar
  121. Marengere LE, Mirtsos C, Kozieradzki I, Veillette A, Mak TW, Penninger JM (1997) Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J Immunol (Baltimore, Md, 1950) 159(1):70–76Google Scholar
  122. McVicar DW, Burshtyn DN (2001) Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. Sci STKE: Signal Transduct Knowl Environ 2001(75):re1Google Scholar
  123. Miyatake S, Nakaseko C, Umemori H, Yamamoto T, Saito T (1998) Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem Biophys Res Commun 249(2):444–448CrossRefGoogle Scholar
  124. Mo X, Zhang H, Preston S, Martin K, Zhou B, Vadalia N et al (2018) Interferon-gamma signaling in melanocytes and melanoma cells regulates expression of CTLA-4. Cancer Res 78(2):436–450CrossRefGoogle Scholar
  125. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J et al (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9(11):1236–1243CrossRefPubMedPubMedCentralGoogle Scholar
  126. Mohammed F, Stones DH, Zarling AL, Willcox CR, Shabanowitz J, Cummings KL et al (2017) The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget 8(33):54160–54172CrossRefPubMedPubMedCentralGoogle Scholar
  127. Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al (2013) High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 121(8):1367–1376CrossRefPubMedPubMedCentralGoogle Scholar
  128. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H et al (2008) Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol (Baltimore, Md, 1950) 181(11):7660–7669Google Scholar
  129. Nakagawa S, Serada S, Kakubari R, Hiramatsu K, Sugase T, Matsuzaki S et al (2018) Intratumoral delivery of an adenoviral vector carrying the SOCS-1 gene enhances T-cell-mediated antitumor immunity by suppressing PD-L1. Mol Cancer Ther 17(9):1941–1950CrossRefGoogle Scholar
  130. Nakaseko C, Miyatake S, Iida T, Hara S, Abe R, Ohno H et al (1999) Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J Exp Med 190(6):765–774CrossRefPubMedPubMedCentralGoogle Scholar
  131. Nam KO, Kang H, Shin SM, Cho KH, Kwon B, Kwon BS et al (2005) Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J Immunol (Baltimore, Md, 1950) 174(4):1898–1905Google Scholar
  132. Nobumoto A, Oomizu S, Arikawa T, Katoh S, Nagahara K, Miyake M et al (2009) Galectin-9 expands unique macrophages exhibiting plasmacytoid dendritic cell-like phenotypes that activate NK cells in tumor-bearing mice. Clin Immunol (Orlando, Fla) 130(3):322–330CrossRefGoogle Scholar
  133. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R et al (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 94(12):6216–6221CrossRefGoogle Scholar
  134. Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP et al (2010) Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS ONE 5(6):e11311CrossRefPubMedPubMedCentralGoogle Scholar
  135. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98(24):13866–13871CrossRefGoogle Scholar
  136. Olsson C, Riesbeck K, Dohlsten M, Michaelsson E (1999) CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem 274(20):14400–14405CrossRefGoogle Scholar
  137. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW (1997) Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272(40):24735–24738CrossRefGoogle Scholar
  138. Ou W, Thapa RK, Jiang L, Soe ZC, Gautam M, Chang JH et al (2018) Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Controll Release: Off J Controll Release Soc 281:84–96CrossRefGoogle Scholar
  139. Oussa NA, Soumounou Y, Sabbagh L (2013) TRAF1 phosphorylation on Serine 139 modulates NF-kappaB activity downstream of 4-1BB in T cells. Biochem Biophys Res Commun 432(1):129–134CrossRefGoogle Scholar
  140. Pao LI, Badour K, Siminovitch KA, Neel BG (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523CrossRefGoogle Scholar
  141. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553CrossRefPubMedPubMedCentralGoogle Scholar
  142. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signaling 5(230):ra46Google Scholar
  143. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33(16):3091–3098CrossRefPubMedPubMedCentralGoogle Scholar
  144. Peters C, Oberg HH, Kabelitz D, Wesch D (2014) Phenotype and regulation of immunosuppressive Vdelta2-expressing gammadelta T cells. Cell Mol life Sci: CMLS 71(10):1943–1960CrossRefGoogle Scholar
  145. Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A et al (2016) Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. Oncotarget 7(2):1168–1184CrossRefGoogle Scholar
  146. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M et al (2007) The loss of telomerase activity in highly differentiated CD8+ CD28-CD27− T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol (Baltimore, Md, 1950) 178(12):7710–7719Google Scholar
  147. Prestipino A, Emhardt AJ, Aumann K, O’Sullivan D, Gorantla SP, Duquesne S et al (2018) Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 10(429)Google Scholar
  148. Putz EM, Gotthardt D, Sexl V (2014) STAT1-S727—the license to kill. Oncoimmunology. 3(9):e955441CrossRefPubMedPubMedCentralGoogle Scholar
  149. Qian Y, Pei D, Cheng T, Wu C, Pu X, Chen X et al (2015) CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med Oncol (Northwood, London, England) 32(3):44CrossRefGoogle Scholar
  150. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4(5):627–630CrossRefGoogle Scholar
  151. Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L et al (2018) BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol 60(47–56):e1Google Scholar
  152. Radhakrishnan S, Nguyen LT, Ciric B, Van Keulen VP, Pease LR (2007) B7-DC/PD-L2 cross-linking induces NF-kappaB-dependent protection of dendritic cells from cell death. J Immunol (Baltimore, Md, 1950) 178(3):1426–32Google Scholar
  153. Radivojac P, Baenziger PH, Kann MG, Mort ME, Hahn MW, Mooney SD (2008) Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24(16):i241–i247CrossRefPubMedPubMedCentralGoogle Scholar
  154. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125CrossRefPubMedPubMedCentralGoogle Scholar
  155. Rolvering C, Zimmer AD, Ginolhac A, Margue C, Kirchmeyer M, Servais F et al (2018) The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by alpha-PD-L1 or alpha-IL6 antibodies. J Leukoc Biol 104(5):969–985CrossRefGoogle Scholar
  156. Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G et al (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34(3):613–622CrossRefGoogle Scholar
  157. Sadahiro H, Kang KD, Gibson JT, Minata M, Yu H, Shi J et al (2018) Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma. Can Res 78(11):3002–3013CrossRefGoogle Scholar
  158. Saito T (1998) Negative regulation of T cell activation. Curr Opin Immunol 10(3):313–321CrossRefGoogle Scholar
  159. Saito T, Yamasaki S (2003) Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 192:143–160CrossRefGoogle Scholar
  160. Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ et al (2018) Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signaling 11(544)Google Scholar
  161. Samelson LE, Davidson WF, Morse HC 3rd, Klausner RD (1986) Abnormal tyrosine phosphorylation on T-cell receptor in lymphoproliferative disorders. Nature 324(6098):674–676CrossRefGoogle Scholar
  162. Saunders PA, Hendrycks VR, Lidinsky WA, Woods ML (2005) PD-L2: PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. Eur J Immunol 35(12):3561–3569CrossRefGoogle Scholar
  163. Schneider H, Rudd CE (2000) Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem Biophys Res Commun 269(1):279–283CrossRefGoogle Scholar
  164. Schneider H, Schwartzberg PL, Rudd CE (1998) Resting lymphocyte kinase (Rlk/Txk) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem Biophys Res Commun 252(1):14–19CrossRefGoogle Scholar
  165. Schneider H, da Rocha Dias S, Hu H, Rudd CE (2001) A regulatory role for cytoplasmic YVKM motif in CTLA-4 inhibition of TCR signaling. Eur J Immunol 31(7):2042–2050CrossRefGoogle Scholar
  166. Schneider H, Valk E, Leung R, Rudd CE (2008) CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE 3(12):e3842CrossRefPubMedPubMedCentralGoogle Scholar
  167. Schwartz M, Zhang Y, Rosenblatt JD (2016) B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer 4:40CrossRefPubMedPubMedCentralGoogle Scholar
  168. Schwarz H, Tuckwell J, Lotz M (1993) A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 134(2):295–298CrossRefGoogle Scholar
  169. Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586CrossRefGoogle Scholar
  170. Shahbaz S, Bozorgmehr N, Koleva P, Namdar A, Jovel J, Fava RA et al (2018) CD71+ VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol 16(12):e2006649CrossRefPubMedPubMedCentralGoogle Scholar
  171. Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL (2017) Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 6(1):e1261779CrossRefGoogle Scholar
  172. Shen P, Su Z, Wang S, Xu H (2014) Bioinformatic analysis of mouse glucocorticoid-induced tumor necrosis factor receptor-related protein. Xi bao yu fen zi mian yi xue za zhi = Chinese J Cell Mol Immunol 30(11):1205–1208Google Scholar
  173. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41CrossRefGoogle Scholar
  174. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142CrossRefGoogle Scholar
  175. Shin HH, Lee MH, Kim SG, Lee YH, Kwon BS, Choi HS (2002) Recombinant glucocorticoid induced tumor necrosis factor receptor (rGITR) induces NOS in murine macrophage. FEBS Lett 514(2–3):275–280CrossRefGoogle Scholar
  176. Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS et al (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6(5):583–589CrossRefGoogle Scholar
  177. Sinclair NR (1999) Why so many coinhibitory receptors? Scand J Immunol 50(1):10–13CrossRefGoogle Scholar
  178. Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK (2017) Phosphorylation: implications in cancer. Protein J 36(1):1–6CrossRefGoogle Scholar
  179. Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S et al (2013) PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Cell Commun Signaling: CCS 11(1):28CrossRefGoogle Scholar
  180. Snyder MR, Nakajima T, Leibson PJ, Weyand CM, Goronzy JJ (2004) Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J Immunol (Baltimore, Md, 1950) 173(6):3725–3731Google Scholar
  181. Song TL, Nairismagi ML, Laurensia Y, Lim JQ, Tan J, Li ZM et al (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132(11):1146–1158CrossRefPubMedPubMedCentralGoogle Scholar
  182. Suda K, Rozeboom L, Furugaki K, Yu H, Melnick MAC, Ellison K et al (2017) Increased EGFR phosphorylation correlates with higher programmed death ligand-1 expression: analysis of TKI-resistant lung cancer cell lines. Biomed Res Int 2017:7694202CrossRefPubMedPubMedCentralGoogle Scholar
  183. Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L et al (2018) The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol MedGoogle Scholar
  184. Thapa B, Koo BH, Kim YH, Kwon HJ, Kim DS (2014) Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr(9)(2)(5). Biochem Biophys Res Commun 450(4):1696–1701CrossRefGoogle Scholar
  185. Thien CB, Langdon WY (2005) c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391(Pt 2):153–166CrossRefPubMedPubMedCentralGoogle Scholar
  186. Thorn M, Guha P, Cunetta M, Espat NJ, Miller G, Junghans RP et al (2016) Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther 23(6):188–198CrossRefGoogle Scholar
  187. Tsui FW, Martin A, Wang J, Tsui HW (2006) Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol Res 35(1–2):127–136CrossRefGoogle Scholar
  188. Tuettenberg A, Hahn SA, Mazur J, Gerhold-Ay A, Scholma J, Marg I et al (2016) Kinome profiling of regulatory T Cells: a closer look into a complex intracellular network. PLoS ONE 11(2):e0149193CrossRefPubMedPubMedCentralGoogle Scholar
  189. Tuyaerts S, Van Meirvenne S, Bonehill A, Heirman C, Corthals J, Waldmann H et al (2007) Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+ CD25+ regulatory T cells. J Leukoc Biol 82(1):93–105CrossRefGoogle Scholar
  190. Tymoszuk P, Charoentong P, Hackl H, Spilka R, Muller-Holzner E, Trajanoski Z et al (2014) High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer 14:257CrossRefPubMedPubMedCentralGoogle Scholar
  191. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541CrossRefGoogle Scholar
  192. Ulges A, Klein M, Reuter S, Gerlitzki B, Hoffmann M, Grebe N et al (2015) Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nat Immunol 16(3):267–275CrossRefGoogle Scholar
  193. van de Weyer PS, Muehlfeit M, Klose C, Bonventre JV, Walz G, Kuehn EW (2006) A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 351(2):571–576CrossRefGoogle Scholar
  194. Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR (1997) Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res 232(1):25–28CrossRefGoogle Scholar
  195. Wang A, Lu C, Ning Z, Gao W, Xie Y, Zhang N et al (2017a) Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. Oncotarget 8(17):28247–28259PubMedPubMedCentralGoogle Scholar
  196. Wang X, Ni S, Chen Q, Ma L, Jiao Z, Wang C et al (2017b) Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. Cell Biol Int 41(2):177–186CrossRefGoogle Scholar
  197. Wang Y, Wang H, Yao H, Li C, Fang JY, Xu J (2018) Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol 9:536CrossRefPubMedPubMedCentralGoogle Scholar
  198. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679CrossRefGoogle Scholar
  199. Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P, Lee C et al (2013) The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res 23(5):341–348CrossRefPubMedPubMedCentralGoogle Scholar
  200. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3(12):1375–1385CrossRefPubMedPubMedCentralGoogle Scholar
  201. Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol (Baltimore, Md, 1950) 169(10):5392–5395Google Scholar
  202. Wu M, Xue YH (2008) Main regulatory factors for differentiation, development and function of naturally occurred CD4+ CD25+ regulatory T cells. Zhongguo shi yan xue ye xue za zhi. 16(1):207–212PubMedGoogle Scholar
  203. Wu K, Zhao H, Xiu Y, Li Z, Zhao J, Xie S et al (2019) IL-21-mediated expansion of Vgamma9Vdelta2 T cells is limited by the Tim-3 pathway. Int Immunopharmacol 69:136–142CrossRefGoogle Scholar
  204. Xiao Y, Qiao G, Tang J, Tang R, Guo H, Warwar S et al (2015) Protein tyrosine phosphatase SHP-1 modulates T cell responses by controlling Cbl-b degradation. J Immunol (Baltimore, Md, 1950) 195(9):4218–42127Google Scholar
  205. Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ et al (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6(5):546–559CrossRefGoogle Scholar
  206. Xiao W, Klement JD, Lu C, Ibrahim ML, Liu K (2018) IFNAR1 controls autocrine type I IFN regulation of PD-L1 expression in myeloid-derived suppressor cells. J Immunol (Baltimore, Md, 1950) 201(1):264–277Google Scholar
  207. Xu L, Zhang Y, Tian K, Chen X, Zhang R, Mu X et al (2018) Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J Exp Clin Cancer Res: CR 37(1):261CrossRefGoogle Scholar
  208. Xu Y, Poggio M, Jin HY, Shi Z, Forester CM, Wang Y et al (2019) Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med 25(2):301–311CrossRefPubMedPubMedCentralGoogle Scholar
  209. Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al (2008) PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224CrossRefGoogle Scholar
  210. Yan D, Farache J, Mingueneau M, Mathis D, Benoist C (2015) Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proc Natl Acad Sci USA 112(48):14942–14947CrossRefGoogle Scholar
  211. Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W et al (2018) Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 28(8):862–864CrossRefPubMedPubMedCentralGoogle Scholar
  212. Yao A, Liu F, Chen K, Tang L, Liu L, Zhang K et al (2014) Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurother: J Am Soc Exp Neurother 11(3):636–650CrossRefGoogle Scholar
  213. Youlin K, Li Z, Xin G, Mingchao X, Xiuheng L, Xiaodong W (2013) Enhanced function of cytotoxic T lymphocytes induced by dendritic cells modified with truncated PSMA and 4-1BBL. Hum Vaccines Immunother 9(4):766–772CrossRefGoogle Scholar
  214. Yu C, Sonnen AF, George R, Dessailly BH, Stagg LJ, Evans EJ et al (2011) Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 286(8):6685–6696CrossRefGoogle Scholar
  215. Zell T, Warden CS, Chan AS, Cook ME, Dell CL, Hunt SW et al (1998) Regulation of beta 1-integrin-mediated cell adhesion by the Cbl adaptor protein. Curr Biol: CB 8(14):814–822Google Scholar
  216. Zhang J, Bardos T, Li D, Gal I, Vermes C, Xu J et al (2002) Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol (Baltimore, Md, 1950) 169(5):2236–2240Google Scholar
  217. Zhang Y, Ma CA, Lawrence MG, Break TJ, O’Connell MP, Lyons JJ et al (2017) PD-L1 up-regulation restrains Th17 cell differentiation in STAT3 loss- and STAT1 gain-of-function patients. J Exp Med 214(9):2523–2533CrossRefPubMedPubMedCentralGoogle Scholar
  218. Zhang Y, Wu L, Li Z, Zhang W, Luo F, Chu Y et al (2018a) Glycocalyx-mimicking nanoparticles improve anti-PD-L1 cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules 19(6):2098–2108CrossRefGoogle Scholar
  219. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT et al (2018b) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553(7686):91–95CrossRefGoogle Scholar
  220. Zhang H, Song Y, Yang H, Liu Z, Gao L, Liang X et al (2018c) Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-kappaB/IL-6/STAT3 axis. Oncogene 37(18):2456–2468CrossRefGoogle Scholar
  221. Zhang H, Dutta P, Liu J, Sabri N, Song Y, Li WX et al (2019) Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J Cell Mol Med 23(1):535–542CrossRefGoogle Scholar
  222. Zhao J, Pan X, Xing Y, Lu M, Chen Y, Shi M (2015) Effects of soluble programmed death ligand 1 on regulating the proliferation of T lymphocytes and its mechanism. Zhonghua yi xue za zhi. 95(6):449–452PubMedGoogle Scholar
  223. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252CrossRefGoogle Scholar
  224. Zou Q, Chen YF, Zheng XQ, Ye SF, Xu BY, Liu YX et al (2018) Novel thioredoxin reductase inhibitor butaselen inhibits tumorigenesis by down-regulating programmed death-ligand 1 expression. J Zhejiang Univ Sci B 19(9):689–698CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of MedicineRenji Hospital, Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, School of Life Sciences and TechnologyTongji University Cancer Center, Tongji UniversityShanghaiChina
  3. 3.Institutes of Biomedical Sciences, Zhongshan-Xuhui HospitalFudan UniversityShanghaiChina

Personalised recommendations