Advertisement

Lysosome as the Black Hole for Checkpoint Molecules

  • Huanbin WangEmail author
  • Xue Han
  • Jie Xu
Chapter
  • 147 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)

Abstract

Lysosomes, as digestive organelles full of hydrolases, have complex functions and play an important role in cellular physiological and pathological processes. In normal physiological conditions, lysosomes can sense the nutritional state and be responsible for recycling raw materials to provide nutrients, affecting cell signaling pathways and regulating cell proliferation. Lysosomes are related to many diseases and associated with metastasis and drug resistance of tumors. In recent years, much attention has been paid to the tumor immunotherapy especially immune checkpoint blockade therapy. Accumulating data suggest that lysosomes may serve as a major destruction for immune checkpoint molecules, and secretory lysosomes can temporarily store immune checkpoint proteins. Once activated, the compounds contained in secretory lysosomes are released to the surface of cell membrane rapidly. Inhibitions of lysosomes can overcome the chemoresistance of some tumors and enhance the efficacy of immunotherapy.

Keywords

Lysosome Cancer cell Cancer therapy Immune checkpoint 

References

  1. Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226CrossRefPubMedGoogle Scholar
  2. Bae J, Lee SJ, Park CG, Lee YS, Chun T (2014) Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol 193:3101–3112CrossRefGoogle Scholar
  3. Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696CrossRefPubMedGoogle Scholar
  4. Barbosa MD et al (1996) Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature 382:262–265CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131CrossRefPubMedGoogle Scholar
  6. Bluestone JA (1995) New perspectives of CD28-B7-mediated T cell costimulation. Immunity 2:555–559CrossRefPubMedGoogle Scholar
  7. Bohn G et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13:38–45CrossRefPubMedGoogle Scholar
  8. Boise LH et al (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3:87–98CrossRefPubMedGoogle Scholar
  9. Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96CrossRefPubMedGoogle Scholar
  10. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424CrossRefPubMedGoogle Scholar
  11. Brunet JF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328:267–270CrossRefGoogle Scholar
  12. Burr ML et al (2017) CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549:101–105CrossRefPubMedPubMedCentralGoogle Scholar
  13. Catalfamo M et al (2004) Human CD8+ T cells store RANTES in a unique secretory compartment and release it rapidly after TcR stimulation. Immunity 20:219–230CrossRefPubMedGoogle Scholar
  14. Cesen MH, Pegan K, Spes A, Turk B (2012) Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 318:1245–1251CrossRefPubMedGoogle Scholar
  15. Commisso C et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:633–637CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104CrossRefPubMedGoogle Scholar
  17. Daniel PT et al (1998) Immunotherapy of B-cell lymphoma with CD3x19 bispecific antibodies: costimulation via CD28 prevents “veto” apoptosis of antibody-targeted cytotoxic T cells. Blood 92:4750–4757CrossRefPubMedGoogle Scholar
  18. Davidson SM, Vander Heiden MG (2017) Critical functions of the lysosome in cancer biology. Annu Rev Pharmacol Toxicol 57:481–507Google Scholar
  19. Davidson SM et al (2017) Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med 23:235–241CrossRefPubMedGoogle Scholar
  20. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3:11–21CrossRefPubMedGoogle Scholar
  21. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+ -ATPase activity is required for endocytic and secretory trafficking in arabidopsis. Plant Cell 18:715–730CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dibble CC, Cantley LC (2015) Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 25:545–555CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duong LT, Wesolowski GA, Leung P, Oballa R, Pickarski M (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13:2898–2909CrossRefPubMedGoogle Scholar
  24. Durand-Panteix S et al (2012) B7-H1, which represses EBV-immortalized B cell killing by autologous T and NK cells, is oppositely regulated by c-Myc and EBV latency III program at both mRNA and secretory lysosome levels. J Immunol 189:181–190CrossRefPubMedGoogle Scholar
  25. Elfenbein A et al (2012) Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. Sci Signal 5:ra36Google Scholar
  26. Fais S, De Milito A, You H, Qin W (2007) Targeting vacuolar H+ -ATPases as a new strategy against cancer. Cancer Res 67:10627–10630CrossRefPubMedGoogle Scholar
  27. Fehrenbacher N, Jaattela M (2005) Lysosomes as targets for cancer therapy. Cancer Res 65:2993–2995CrossRefPubMedGoogle Scholar
  28. Fu D et al (2014) Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem 6:614–622CrossRefPubMedPubMedCentralGoogle Scholar
  29. Furuta K et al (2001) Expression of lysosome-associated membrane proteins in human colorectal neoplasms and inflammatory diseases. Am J Pathol 159:449–455CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gasser O, Schmid TA, Zenhaeusern G, Hess C (2006) Cyclooxygenase regulates cell surface expression of CXCR3/1-storing granules in human CD4+ T cells. J Immunol 177:8806–8812CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gocheva V et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goh LK, Sorkin A (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 5:a017459CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gonzalez LC et al (2005) A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA 102:1116–1121CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gotink KJ et al (2011) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 17:7337–7346CrossRefPubMedPubMedCentralGoogle Scholar
  35. Granato M et al (2013) HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma. Cell Death Dis 4:e730CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guo JY et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460–470CrossRefPubMedPubMedCentralGoogle Scholar
  37. Haigler HT, McKanna JA, Cohen S (1979) Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol 83:82–90CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hales EC, Taub JW, Matherly LH (2014) New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 26:149–161CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedPubMedCentralGoogle Scholar
  40. Iida T et al (2000) Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing lysosomes upon activation of CD4+ T cells. J Immunol 165:5062–5068CrossRefPubMedPubMedCentralGoogle Scholar
  41. Inaba K et al (2000) The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp Med 191:927–936CrossRefPubMedPubMedCentralGoogle Scholar
  42. Itoh A, Nonaka Y, Ogawa T, Nakamura T, Nishi N (2019) Galectin-9 induces atypical ubiquitination leading to cell death in PC-3 prostate cancer cells. Glycobiology 29:22–35CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jenkins MK (1994) The ups and downs of T cell costimulation. Immunity 1:443–446CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jopling HM et al (2014) Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells 3:363–385CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jung J et al (2006) Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2. Blood 108:362–369CrossRefPubMedPubMedCentralGoogle Scholar
  46. Keliher EJ et al (2013) Targeting cathepsin E in pancreatic cancer by a small molecule allows in vivo detection. Neoplasia 15:684–693CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kern JC et al (2016) Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27:2081–2088CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kirkegaard T, Jaattela M (2009) Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793:746–754CrossRefPubMedPubMedCentralGoogle Scholar
  50. Klein C et al (1994) Partial albinism with immunodeficiency (Griscelli syndrome). J Pediatr 125:886–895CrossRefPubMedGoogle Scholar
  51. Koguchi Y, Thauland TJ, Slifka MK, Parker DC (2007) Preformed CD40 ligand exists in secretory lysosomes in effector and memory CD4+ T cells and is quickly expressed on the cell surface in an antigen-specific manner. Blood 110:2520–2527CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kos J, Mitrovic A, Mirkovic B (2014) The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med Chem 6:1355–1371CrossRefPubMedPubMedCentralGoogle Scholar
  53. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kuma A et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes in iron metabolism, ageing and apoptosis. Histochem Cell Biol 129:389–406CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lankelma JM et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233CrossRefPubMedPubMedCentralGoogle Scholar
  57. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lau A et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lawrence RE, Zoncu R (2019) The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol 21:133–142CrossRefPubMedPubMedCentralGoogle Scholar
  60. LeGendre O, Breslin PA, Foster DA (2015) (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Mol Cell Oncol 2:e1006077CrossRefPubMedPubMedCentralGoogle Scholar
  61. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lindsten T et al (1993) Characterization of CTLA-4 structure and expression on human T cells. J Immunol 151:3489–3499PubMedGoogle Scholar
  63. Linsley PS (1995) Distinct roles for CD28 and cytotoxic T lymphocyte-associated molecule-4 receptors during T cell activation? J Exp Med 182:289–292CrossRefPubMedGoogle Scholar
  64. Linsley PS et al (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543CrossRefPubMedPubMedCentralGoogle Scholar
  65. Liu K et al (2016) Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 212:181–198CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lo B et al (2015) AUTOIMMUNE DISEASE. patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–40Google Scholar
  67. Luzio JP et al (2003) Membrane dynamics and the biogenesis of lysosomes. Mol Membr Biol 20:141–154CrossRefPubMedGoogle Scholar
  68. Lyons A et al (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci 27:8309–8313CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lyons A et al (2017) Analysis of the Impact of CD200 on Phagocytosis. Mol Neurobiol 54:5730–5739CrossRefPubMedGoogle Scholar
  70. Mah LY, Ryan KM (2012) Autophagy and cancer. Cold Spring Harb Perspect Biol 4:a008821CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109CrossRefPubMedPubMedCentralGoogle Scholar
  72. Marsters SA et al (1998) Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol 8:525–528CrossRefPubMedGoogle Scholar
  73. Maynadier M et al (2013) Dipeptide mimic oligomer transporter mediates intracellular delivery of Cathepsin D inhibitors: a potential target for cancer therapy. J Control Release 171:251–257CrossRefPubMedGoogle Scholar
  74. Mellman I, Yarden Y (2013) Endocytosis and cancer. Cold Spring Harb Perspect Biol 5:a016949CrossRefPubMedPubMedCentralGoogle Scholar
  75. Menasche G et al (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25:173–176CrossRefPubMedGoogle Scholar
  76. Meo-Evoli N et al (2015) V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy. Oncotarget 6:28057–28070CrossRefPubMedPubMedCentralGoogle Scholar
  77. Meylan F et al (2008) The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 29:79–89CrossRefPubMedPubMedCentralGoogle Scholar
  78. Migone TS et al (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16:479–492CrossRefPubMedGoogle Scholar
  79. Miller KD et al (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J ClinGoogle Scholar
  80. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8:835–850CrossRefPubMedGoogle Scholar
  81. Mousavi SA, Brech A, Berg T, Kjeken R (2003) Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes. Biochem J 372:861–869CrossRefPubMedPubMedCentralGoogle Scholar
  82. Munz C (2010) Antigen processing via autophagy–not only for MHC class II presentation anymore? Curr Opin Immunol 22:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  83. Murphy KM, Nelson CA, Sedy JR (2006) Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 6:671–681CrossRefPubMedGoogle Scholar
  84. Nagle DL et al (1996) Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet 14:307–311CrossRefPubMedGoogle Scholar
  85. Nishimura Y, Sameni M, Sloane BF (1998) Malignant transformation alters intracellular trafficking of lysosomal cathepsin D in human breast epithelial cells. Pathol Oncol Res 4:283–296CrossRefPubMedGoogle Scholar
  86. Noel PJ, Boise LH, Green JM, Thompson CB (1996) CD28 costimulation prevents cell death during primary T cell activation. J Immunol 157:636–642PubMedGoogle Scholar
  87. Owada T et al (2010) Activation-induced accumulation of B and T lymphocyte attenuator at the immunological synapse in CD4+ T cells. J Leukoc Biol 87:425–432CrossRefPubMedGoogle Scholar
  88. Palm W et al (2015) The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162:259–270CrossRefPubMedPubMedCentralGoogle Scholar
  89. Perera RM, Bardeesy N (2015) Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov 5:1247–1261CrossRefPubMedPubMedCentralGoogle Scholar
  90. Perera RM, Zoncu R (2016) The Lysosome as a Regulatory Hub. Annu Rev Cell Dev Biol 32:223–253CrossRefPubMedGoogle Scholar
  91. Perera RM et al (2015) Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature 524:361–365CrossRefPubMedPubMedCentralGoogle Scholar
  92. Piao S, Amaravadi RK (2016) Targeting the lysosome in cancer. Ann N Y Acad Sci 1371:45–54CrossRefPubMedGoogle Scholar
  93. Puleston DJ et al (2014) Autophagy is a critical regulator of memory CD8(+) T cell formation. Elife 3Google Scholar
  94. Qi C et al (2018) Anti-mitotic chemotherapeutics promote apoptosis through TL1A-activated death receptor 3 in cancer cells. Cell Res 28:544–555CrossRefPubMedPubMedCentralGoogle Scholar
  95. Radvanyi LG et al (1996) CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J Immunol 156:1788–1798PubMedGoogle Scholar
  96. Rebsamen M et al (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–481CrossRefPubMedPubMedCentralGoogle Scholar
  97. Repnik U, Cesen MH, Turk B (2013) The endolysosomal system in cell death and survival. Cold Spring Harb Perspect Biol 5:a008755CrossRefPubMedPubMedCentralGoogle Scholar
  98. Rock BM et al (2015) Intracellular catabolism of an antibody drug conjugate with a noncleavable linker. Drug Metab Dispos 43:1341–1344CrossRefPubMedGoogle Scholar
  99. Saftig P, Sandhoff K (2013) Cancer: killing from the inside. Nature 502:312–313CrossRefPubMedGoogle Scholar
  100. Saftig P, Schroder B, Blanz J (2010) Lysosomal membrane proteins: life between acid and neutral conditions. Biochem Soc Trans 38:1420–1423CrossRefPubMedGoogle Scholar
  101. Saitoh T, Akira S (2010) Regulation of innate immune responses by autophagy-related proteins. J Cell Biol 189:925–935CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303CrossRefPubMedPubMedCentralGoogle Scholar
  103. Schmees C et al (2012) Macropinocytosis of the PDGF beta-receptor promotes fibroblast transformation by H-RasG12V. Mol Biol Cell 23:2571–2582CrossRefPubMedPubMedCentralGoogle Scholar
  104. Schneider H et al (1999) Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 163:1868–1879PubMedGoogle Scholar
  105. Schwartz RH (1992) Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71:1065–1068CrossRefPubMedGoogle Scholar
  106. Schwartz JA et al (2017) Tim-3 is a marker of plasmacytoid dendritic cell dysfunction during HIV infection and is associated with the recruitment of IRF7 and p85 into lysosomes and with the submembrane displacement of TLR9. J Immunol 198:3181–3194CrossRefPubMedGoogle Scholar
  107. Sedy JR et al (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6:90–98CrossRefPubMedGoogle Scholar
  108. Settembre C et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433CrossRefPubMedPubMedCentralGoogle Scholar
  109. Settembre C et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108CrossRefPubMedPubMedCentralGoogle Scholar
  110. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296CrossRefPubMedPubMedCentralGoogle Scholar
  111. Seydoux E et al (2014) Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation. Int J Nanomed 9:3885–3902CrossRefGoogle Scholar
  112. Shen HM, Mizushima N (2014) At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39:61–71CrossRefPubMedGoogle Scholar
  113. Small DM et al (2013) Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization. Int J Cancer 133:2102–2112CrossRefPubMedGoogle Scholar
  114. Smith EL, Schuchman EH (2008) Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo. Mol Ther 16:1565–1571CrossRefPubMedGoogle Scholar
  115. Stinchcombe JC, Griffiths GM (1999) Regulated secretion from hemopoietic cells. J Cell Biol 147:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  116. Thompson CB (1995) Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation? Cell 81:979–982CrossRefPubMedGoogle Scholar
  117. Thompson CB, Allison JP (1997) The emerging role of CTLA-4 as an immune attenuator. Immunity 7:445–450CrossRefPubMedGoogle Scholar
  118. Tsai JY et al (2014) Effects of novel human cathepsin S inhibitors on cell migration in human cancer cells. J Enzyme Inhib Med Chem 29:538–546CrossRefPubMedGoogle Scholar
  119. van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67:2–17CrossRefPubMedGoogle Scholar
  120. Walunas TL et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413CrossRefPubMedGoogle Scholar
  121. Wang S et al (2015) Metabolism. lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–94Google Scholar
  122. Wang J et al (2019) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176:334–347, e12Google Scholar
  123. Wang H et al (2019) HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol 15:42–50CrossRefPubMedGoogle Scholar
  124. Watanabe N et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679CrossRefPubMedGoogle Scholar
  125. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68CrossRefPubMedGoogle Scholar
  126. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL (2015) Identification of an oncogenic RAB protein. Science 350:211–217CrossRefPubMedPubMedCentralGoogle Scholar
  127. White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46CrossRefPubMedPubMedCentralGoogle Scholar
  128. Wiersma VR et al (2015) The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux. Autophagy 11:1373–1388CrossRefPubMedPubMedCentralGoogle Scholar
  129. Withana NP et al (2012) Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer Res 72:1199–1209CrossRefPubMedPubMedCentralGoogle Scholar
  130. Woo SR et al (2010) Differential subcellular localization of the regulatory T-cell protein LAG-3 and the coreceptor CD4. Eur J Immunol 40:1768–1777CrossRefPubMedPubMedCentralGoogle Scholar
  131. Wu Z et al (2010) Autophagy blockade sensitizes prostate cancer cells towards src family kinase inhibitors. Genes Cancer 1:40–49CrossRefPubMedPubMedCentralGoogle Scholar
  132. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80CrossRefPubMedPubMedCentralGoogle Scholar
  133. Yang S et al (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25:717–729CrossRefPubMedPubMedCentralGoogle Scholar
  134. Zeidan YH, Hannun YA (2010) The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation. Curr Mol Med 10:454–466CrossRefPubMedGoogle Scholar
  135. Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T (2018) Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 37:4639–4661CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zhang X et al (2017) Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol Res 5:363–375CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zhang N et al (2019) SA-49, a novel aloperine derivative, induces MITF-dependent lysosomal degradation of PD-L1. EBioMedicine 40:151–162CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zwart W et al (2010) The invariant chain transports TNF family member CD70 to MHC class II compartments in dendritic cells. J Cell Sci 123:3817–3827CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of MedicineRenji Hospital, Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institutes of Biological SciencesFudan UniversityShanghaiChina
  3. 3.Institutes of Biomedical Sciences, Zhongshan-Xuhui HospitalFudan UniversityShanghaiChina

Personalised recommendations