Advertisement

Injectable In Situ-Forming Hydrogels for Protein and Peptide Delivery

  • Seung Hun Park
  • Yun Bae Ji
  • Joon Yeong Park
  • Hyeon Jin Ju
  • Mijeong Lee
  • Surha Lee
  • Jae Ho Kim
  • Byoung Hyun Min
  • Moon Suk KimEmail author
Chapter
  • 41 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1250)

Abstract

Injectable in situ-forming hydrogels have been used clinically in diverse biomedical applications. These hydrogels have distinct advantages such as easy management and minimal invasiveness. The hydrogels are aqueous formulations, and a simple injection at the target site replaces a traditional surgical procedure. Here, we review injectable in situ-forming hydrogels that are formulated by physical and chemical methods to deliver proteins and peptides. Prospects for using in situ-forming hydrogels for several specific applications are also discussed.

Keywords

Injectable in situ forming hydrogels Protein and peptide Drug depot Crosslinking Physical interaction Electrostatic interaction Biomedical application of hydrogel Drug delivery system Click reaction Covalent and non-covalent bonding Protein and peptide loading 

Notes

Acknowledgment

This study was supported by a grant from Creative Materials Discovery Program through the National Research Foundation (2019M3D1A1078938) and Priority Research Centers Program (2019R1A6A1A11051471) funded by the National Research Foundation of Korea (NRF).

References

  1. 1.
    Abedi-Koupai J, Sohrab F, Swarbrick G (2008) Evaluation of hydrogel application on soil water retention characteristics. J Plant Nutr 31(2):317–331Google Scholar
  2. 2.
    Narjary B, Aggarwal P, Singh A et al (2012) Water availability in different soils in relation to hydrogel application. Geoderma 187–188:94–101Google Scholar
  3. 3.
    Seo JY, Lee B, Kang TW et al (2018) Electrostatically interactive injectable hydrogels for drug delivery. Tissue Eng Regen Med 15(5):513–520PubMedPubMedCentralGoogle Scholar
  4. 4.
    Park JH, Park SH, Lee HY et al (2018) An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials 154:86–98PubMedGoogle Scholar
  5. 5.
    Chan BQY, Low ZW, Heng SJ et al (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087PubMedGoogle Scholar
  6. 6.
    Cho KH, Uthaman S, Park IK et al (2018) Injectable biomaterials in plastic and reconstructive surgery: a review of the current status. Tissue Eng Regen Med 15(5):559–574PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bencherif SA, Sands RW, Bhattaa D et al (2012) Injectable preformed scaffolds with shape-memory properties. PNAS 109(48):19590–19595PubMedGoogle Scholar
  8. 8.
    Kim DY, Kwon DY, Kwon JS et al (2015) Injectable in situ-forming hydrogels for regenerative medicines. Polym Rev 55:407–445Google Scholar
  9. 9.
    Jang JY, Park SH, Park JH et al (2016) In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivo-forming hydrogel. Macromol Biosci 16(8):1158–1169PubMedGoogle Scholar
  10. 10.
    Cui H, Zhuang X, He C et al (2015) High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomater 11:183–190PubMedGoogle Scholar
  11. 11.
    Cui J, del Campo A (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun (Camb) 48(74):9302–9304Google Scholar
  12. 12.
    Gopinathan J, Noh I (2018) Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng Reg Med 15(5):531–546Google Scholar
  13. 13.
    Zhao L, Li X, Zhao J et al (2016) A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: its characterization and biocompatibility. Mater Sci Eng C Mater Biol Appl 68:317–326PubMedGoogle Scholar
  14. 14.
    Gupta S, Jain A, Chakraborty M et al (2013) Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv 20(6):237–246PubMedGoogle Scholar
  15. 15.
    Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490PubMedGoogle Scholar
  16. 16.
    Sontyana AG, Mathew AP, Cho KH et al (2018) Biopolymeric in-situ hydrogels for tissue engineering and bio-imaging applications. Tissue Eng Regen Med 15(5):575–590PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sood A, Panchagnula R (2001) Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 101(11):3275–3303PubMedGoogle Scholar
  18. 18.
    Koshy ST, Zhang DKY, Grolman JM et al (2018) Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 65:36–43PubMedGoogle Scholar
  19. 19.
    Park MR, Seo BB, Song SC (2013) Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials 34(4):1327–1336PubMedGoogle Scholar
  20. 20.
    Payyappilly S, Dhara S, Chattopadhyay S (2014) Thermoresponsive biodegradable PEG-PCL-PEG based injectable hydrogel for pulsatile insulin delivery. J Biomed Mater Res A 102(5):1500–1509PubMedGoogle Scholar
  21. 21.
    Huynh DP, Nguyen MK, Lee DS (2010) Controlling the degradation of pH/temperature-sensitive injectable hydrogels based on poly(β-amino ester). Macromol Res 18(2):192–199Google Scholar
  22. 22.
    Park JH, Lee BK, Park SH et al (2017) Preparation of biodegradable and elastic poly(ε-caprolactone-co-lactide) copolymers and evaluation as a localized and sustained drug delivery carrier. Int J Mol Sci 18(3):671PubMedCentralGoogle Scholar
  23. 23.
    Hyun H, Park SH, Kwon DY et al (2014) Thermo-responsive injectable MPEG-polyester diblock copolymers for sustained drug release. Polymers 6(10):2670–2683Google Scholar
  24. 24.
    Lee BK, Park JH, Park SH et al (2017) Preparation of pendant group-functionalized diblock copolymers with adjustable thermogelling behavior. Polymers 9(6):239PubMedCentralGoogle Scholar
  25. 25.
    Caykara T, Kiper S, Demirel G (2006) Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: synthesis, swelling and interaction with ionic surfactants. Eur Polym J 42(2):348–355Google Scholar
  26. 26.
    Ni X, Cheng A, Li J (2009) Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin. J Biomed Mater Res A 88(4):1031–1036PubMedGoogle Scholar
  27. 27.
    Zhang J, Peppas N (2000) Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(n-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107Google Scholar
  28. 28.
    Kim JI, Kim DY, Kwon DY et al (2012) An injectable biodegradable temperature-responsive gel with an adjustable persistence window. Biomaterials 33(10):2823–2834PubMedGoogle Scholar
  29. 29.
    Lee HY, Park JH, Ji YB et al (2018) Preparation of pendant group-functionalized amphiphilic diblock copolymers in the presence of a monomer activator and evaluation as temperature-responsive hydrogels. Polymer 137:293–302Google Scholar
  30. 30.
    Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10(4):1646–1662PubMedGoogle Scholar
  31. 31.
    Lu S, Gao C, Xu X et al (2015) Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7(23):13029–13037PubMedGoogle Scholar
  32. 32.
    Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6(3):173–180PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang L, Ma Y, Pan X et al (2018) A composite hydrogel of chitosan/heparin/poly (gamma-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym 180:168–174PubMedGoogle Scholar
  34. 34.
    Park SH, Kim DY, Panta P et al (2017) An intratumoral injectable, electrostatic, cross-linkable curcumin depot and synergistic enhancement of anticancer activity. NPG Asia Mater 9:e397Google Scholar
  35. 35.
    Chen F, Ni Y, Liu B et al (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44PubMedGoogle Scholar
  36. 36.
    Yucel Falco C, Falkman P, Risbo J et al (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183PubMedGoogle Scholar
  37. 37.
    Liu Z, Yao P (2015) Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr Polym 132:490–498PubMedGoogle Scholar
  38. 38.
    Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47:6889–6899Google Scholar
  39. 39.
    Moreno E, Schwartz J, Larraneta E et al (2014) Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic((R)) F127 copolymers for controlled protein release. Int J Pharm 459(1–2):1–9PubMedGoogle Scholar
  40. 40.
    Li Y, Liu C, Tan Y et al (2014) In situ hydrogel constructed by starch-based nanoparticles via a Schiff base reaction. Carbohydr Polym 110:87–94PubMedGoogle Scholar
  41. 41.
    Lawrence PG, Lapitsky Y (2015) Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects. Langmuir 31(4):1564–1574PubMedGoogle Scholar
  42. 42.
    Alatorre-Meda M, Taboada P, Krajewska B et al (2010) DNA-poly(diallyldimethylammonium chloride) complexation and transfection efficiency. J Phys Chem B 114(29):9356–9366PubMedGoogle Scholar
  43. 43.
    Soto AM, Koivisto JT, Parraga JE et al (2016) Optical projection tomography technique for image texture and mass transport studies in hydrogels based on gellan gum. Langmuir 32(20):5173–5182PubMedGoogle Scholar
  44. 44.
    Lopez-Cebral R, Paolicelli P, Romero-Caamano V et al (2013) Spermidine-cross-linked hydrogels as novel potential platforms for pharmaceutical applications. J Pharm Sci 102(8):2632–2643PubMedGoogle Scholar
  45. 45.
    Han SC, He WD, Li J et al (2009) Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: synthesis, properties, and in vitro release. J Polym Sci A Polym Chem 47(16):4074–4082Google Scholar
  46. 46.
    Lee HY, Park SH, Kim JH et al (2017) Temperature-responsive hydrogels via electrostatic interaction of amphiphilic diblock copolymers with pendant-ion groups. Polym Chem 8(43):6606–6616Google Scholar
  47. 47.
    Oupický D, Konák C, Ulbrich K (1999) DNA complexes with block and graft copolymers of N-(2-hydroxypropyl)methacrylamide and 2-(trimethylammonio)ethyl methacrylate. J Biomater Sci Polym Ed 10(5):573–590PubMedGoogle Scholar
  48. 48.
    Brovarets OO, Yurenko YP, Hovorun DM (2015) The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 33(8):1624–1652PubMedGoogle Scholar
  49. 49.
    Xiao XC, Chu LY, Chen WM et al (2005) Monodispersed thermoresponsive hydrogel microspheres with a volume phase transition driven by hydrogen bonding. Polymer 46(9):3199–3209Google Scholar
  50. 50.
    Kimura M, Fukumoto K, Watanabe J et al (2012) Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. J Biomater Sci Polym Ed 15(5):631–644Google Scholar
  51. 51.
    Zhang S, Fu W, Li Z (2014) Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEGylated poly-l-glutamate. Polym Chem 5:3346–3351Google Scholar
  52. 52.
    Zhang YX, Chen YF, Shen XY et al (2016) Reduction- and pH-sensitive lipoic acid-modified poly( l -lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 86:32–41Google Scholar
  53. 53.
    Gao H, Wang N, Hu X et al (2013) Double hydrogen-bonding pH-sensitive hydrogels retaining high-strengths over a wide pH range. Macromol Rapid Commun 34(1):63–68PubMedGoogle Scholar
  54. 54.
    Chirila TV, Lee HH, Oddon M et al (2014) Hydrogen-bonded supramolecular polymers as self-healing hydrogels: effect of a bulky adamantyl substituent in the ureido-pyrimidinone monomer. J Appl Polym Sci 131:39932Google Scholar
  55. 55.
    Yucel T, Cebe P, Kaplan DL (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97(7):2044–2050PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ozbas B, Kretsinger J, Rajagopal K et al (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37(19):7331–7337Google Scholar
  57. 57.
    Chen Y, Pang XH, Dong CM (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20(4):579–586Google Scholar
  58. 58.
    Miyamae K, Nakahata M, Takashima Y et al (2015) Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew Chem Int Ed Engl 54(31):8984–8987PubMedGoogle Scholar
  59. 59.
    Zhang M, Xu D, Yan X et al (2012) Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed Engl 51(28):7011–7015PubMedGoogle Scholar
  60. 60.
    Wu Y, Guo B, Ma PX (2014) Injectable electroactive hydrogels formed via host–guest interactions. ACS Macro Lett 3(11):1145–1150Google Scholar
  61. 61.
    Li C, Rowland MJ, Shao Y et al (2015) Responsive double network hydrogels of interpenetrating dna and CB[8] host-guest supramolecular systems. Adv Mater 27(21):3298–3304PubMedGoogle Scholar
  62. 62.
    Seo JY, Park SH, Kim MJ et al (2019) Injectable click-crosslinked hyaluronic acid depot to prolong therapeutic activity in articular joints affected by rheumatoid arthritis. ACS Appl Mater Interface 11(28):24984–24998Google Scholar
  63. 63.
    Piluso S, Hiebl B, Gorb SN et al (2018) Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties. Int J Artif Organs 34(2):192–197Google Scholar
  64. 64.
    Pahimanolis N, Sorvari A, Luong ND et al (2014) Thermoresponsive xylan hydrogels via copper-catalyzed azide-alkyne cycloaddition. Carbohydr Polym 102:637–644PubMedGoogle Scholar
  65. 65.
    Koshy ST, Desai RM, Joly P et al (2016) Click-crosslinked injectable gelatin hydrogels. Adv Healthc Mater 5(5):541–547PubMedPubMedCentralGoogle Scholar
  66. 66.
    Desai RM, Koshy ST, Hilderbrand SA et al (2015) Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 50:30–37PubMedGoogle Scholar
  67. 67.
    Hermann CD, Wilson DS, Lawrence KA et al (2014) Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine re-synostosis model. Biomaterials 35(36):9698–9708PubMedPubMedCentralGoogle Scholar
  68. 68.
    Takahashi A, Suzuki Y, Suhara T et al (2013) In situ cross-linkable hydrogel of hyaluronan produced via copper-free click chemistry. Biomacromolecules 14(10):3581–3588PubMedGoogle Scholar
  69. 69.
    Jiang H, Qin S, Dong H et al (2015) An injectable and fast-degradable poly(ethylene glycol) hydrogel fabricated via bioorthogonal strain-promoted azide-alkyne cycloaddition click chemistry. Soft Matter 11(30):6029–6036PubMedGoogle Scholar
  70. 70.
    Wang X, Li Z, Shi T et al (2017) Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 73:21–30PubMedGoogle Scholar
  71. 71.
    Fan M, Ma Y, Mao J et al (2015) Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomater 20:60–68PubMedGoogle Scholar
  72. 72.
    Truong VX, Tsang KM, Simon GP et al (2015) Photodegradable gelatin-based hydrogels prepared by bioorthogonal click chemistry for cell encapsulation and release. Biomacromolecules 16(7):2246–2253PubMedGoogle Scholar
  73. 73.
    Bai X, Lu S, Cao Z et al (2017) Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair. Carbohydr Polym 166:123–130PubMedGoogle Scholar
  74. 74.
    Fuhrmann T, Obermeyer J, Tator CH et al (2015) Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 84:60–69PubMedGoogle Scholar
  75. 75.
    Bi B, Ma M, Lv S et al (2019) In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture. Carbohydr Polym 212:368–377PubMedGoogle Scholar
  76. 76.
    Abandansari HS, Ghanian MH, Varzideh F et al (2018) In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 170:12–25PubMedGoogle Scholar
  77. 77.
    Fan M, Ma Y, Zhang Z et al (2015) Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering. Mater Sci Eng C Mater Biol Appl 56:311–317PubMedGoogle Scholar
  78. 78.
    Wang G, Cao X, Dong H et al (2018) A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced Diels-alder reaction for cartilage tissue engineering. Polymers 10(9):949PubMedCentralGoogle Scholar
  79. 79.
    Huang J, Jiang X (2018) Injectable and degradable pH-responsive hydrogels via spontaneous amino-yne click reaction. ACS Appl Mater Interfaces 10(1):361–370PubMedGoogle Scholar
  80. 80.
    Wang J, He H, Cooper RC et al (2017) In situ-forming polyamidoamine dendrimer hydrogels with tunable properties prepared via Aza-Michael addition reaction. ACS Appl Mater Interfaces 9(12):10494–10503PubMedPubMedCentralGoogle Scholar
  81. 81.
    Dong Y, Saeed AO, Hassan W et al (2012) “One-step” preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 33(2):120–126PubMedGoogle Scholar
  82. 82.
    Maturavongsadit P, Luckanagul JA, Metavarayuth K et al (2016) Promotion of in vitro chondrogenesis of mesenchymal stem cells using in situ hyaluronic hydrogel functionalized with rod-like viral nanoparticles. Biomacromolecules 17(6):1930–1938PubMedGoogle Scholar
  83. 83.
    Kim K, Park JH, Park SH et al (2016) An injectable, click-cross-linked small intestinal submucosa drug depot for the treatment of rheumatoid arthritis. Adv Healthc Mater 5(24):3105–3117PubMedGoogle Scholar
  84. 84.
    Park SH, Seo JY, Park JY et al (2019) An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater 11:30Google Scholar
  85. 85.
    Hardy JG, Lin P, Schmidt CE (2015) Biodegradable hydrogels composed of oxime crosslinked poly(ethylene glycol), hyaluronic acid and collagen: a tunable platform for soft tissue engineering. J Biomater Sci Polym Ed 26(3):143–161PubMedGoogle Scholar
  86. 86.
    Yang X, Shi L, Guo X et al (2016) Convergent in situ assembly of injectable lipogel for enzymatically controlled and targeted delivery of hydrophilic molecules. Carbohydr Polym 154:62–69PubMedGoogle Scholar
  87. 87.
    Truong VX, Hun ML, Li F et al (2016) In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells. Biomater Sci 4(7):1123–1131PubMedGoogle Scholar
  88. 88.
    Jin R, Lin C, Cao A (2014) Enzyme-mediated fast injectable hydrogels based on chitosan–glycolic acid/tyrosine: preparation, characterization, and chondrocyte culture. Polym Chem 5(2):391–398Google Scholar
  89. 89.
    Park KM, Park KD (2018) In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue Eng Regen Med 15(5):547–557PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jin R, Moreira Teixeira LS, Dijkstra PJ et al (2010) Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A 16(8):2429–2440PubMedGoogle Scholar
  91. 91.
    Bode F, da Silva MA, Drake AF et al (2011) Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12(10):3741–3752PubMedGoogle Scholar
  92. 92.
    Park KM, Ko KS, Joung YK et al (2011) In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J Mater Chem 21(35):13180Google Scholar
  93. 93.
    Ranga A, Lutolf MP, Hilborn J et al (2016) Hyaluronic acid hydrogels formed in situ by transglutaminase-catalyzed reaction. Biomacromolecules 17(5):1553–1560PubMedGoogle Scholar
  94. 94.
    Lee F, Chung JE, Kurisawa M (2008) An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4:880–887Google Scholar
  95. 95.
    Yang Z, Xu B (2007) Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. J Mater Chem 17(23):2385–2393Google Scholar
  96. 96.
    Srinivasan G, Chen J, Parisi J et al (2015) An injectable PEG-BSA-coumarin-GOx hydrogel for fluorescence turn-on glucose detection. Appl Biochem Biotechnol 177(5):1115–1126PubMedGoogle Scholar
  97. 97.
    Mosiewicz KA, Johnsson K, Lutolf M (2010) Phosphopantetheinyl transferase-catalyzed formation of bioactive hydrogels for tissue engineering. J Am Chem Soc 132(17):5972–5974PubMedGoogle Scholar
  98. 98.
    Ren K, He C, Cheng Y et al (2014) Injectable enzymatically crosslinked hydrogels based on a poly(l-glutamic acid) graft copolymer. Polym Chem 5(17):5069–5076Google Scholar
  99. 99.
    Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112(5):2853–2888PubMedGoogle Scholar
  100. 100.
    Kim MG, Kang TW, Park JY et al (2019) An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. Mater Sci Eng C 103:109853Google Scholar
  101. 101.
    Park SH, Kwon JS, Lee BS et al (2017) BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci Rep 7(1):6603PubMedPubMedCentralGoogle Scholar
  102. 102.
    Ishii S, Kaneko J, Nagasaki Y (2016) Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials 84:210–218PubMedGoogle Scholar
  103. 103.
    Ding X, Gao J, Wang Z et al (2016) A shear-thinning hydrogel that extends in vivo bioactivity of FGF2. Biomaterials 111:80–89PubMedGoogle Scholar
  104. 104.
    Seliktar D, Zisch AH, Lutolf MP et al (2004) MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res A 68(4):704–716PubMedGoogle Scholar
  105. 105.
    Yu LM, Kazazian K, Shoichet MS (2007) Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J Biomed Mater Res A 8(1):243–255Google Scholar
  106. 106.
    Tam RY, Cooke MJ, Shoichet MS (2012) A covalently modified hydrogel blend of hyaluronan–methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. J Mater Chem 22(37):19402–19411Google Scholar
  107. 107.
    Reis LA, Chiu LL, Wu J et al (2015) Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail 8(2):333–341PubMedGoogle Scholar
  108. 108.
    Shu Y, Hao T, Yao F et al (2015) RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces 7(12):6505–6517PubMedGoogle Scholar
  109. 109.
    Chung EJ, Chien KB, Aguado BA et al (2012) Osteogenic potential of BMP-2-releasing self-assembled membranes. Tissue Eng Part A 19(23–24):2664–2673Google Scholar
  110. 110.
    Seo HW, Kim DY, Kwon DY et al (2013) Injectable intratumoral hydrogel as 5-fluorouracil drug depot. Biomaterials 34(11):2748–2757PubMedGoogle Scholar
  111. 111.
    Kim DY, Kwon DY, Kwon JS et al (2016) Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials 85:232–245PubMedGoogle Scholar
  112. 112.
    Park KM, Lee Y, Son JY et al (2012) In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug Chem 23(10):2042–2050PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Seung Hun Park
    • 1
  • Yun Bae Ji
    • 1
  • Joon Yeong Park
    • 1
  • Hyeon Jin Ju
    • 1
  • Mijeong Lee
    • 1
  • Surha Lee
    • 1
  • Jae Ho Kim
    • 1
  • Byoung Hyun Min
    • 1
  • Moon Suk Kim
    • 1
    Email author
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonSouth Korea

Personalised recommendations