Advertisement

Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery

  • Md. Asadujjaman
  • Dong-Jin Jang
  • Kwan Hyung Cho
  • Seung Rim Hwang
  • Jun-Pil JeeEmail author
Chapter
  • 26 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1249)

Abstract

Extracellular vesicles (EVs) are nanosized membrane particles secreted by cells to convey intercellular information. In recent years, EVs have enticed scientists owing to their prevalent distribution, enormous possibility as therapeutic aspirants, and probable roles as disease biomarkers. As natural transporters in the endogenous communication system, they play a role in protein, lipid, miRNA, mRNA, and DNA transport. In this chapter, we recapitulate the roles of EVs in the vast field of regenerative medicine. This summary mainly describes the potential roles of EVs in the regeneration of extensively studied organs or tissues, such as the heart, kidney, lung, liver, skin, and hair. Furthermore, EV can also transport drugs and corroborate their uptake by target cells through endocytosis; therefore, this chapter also highlights the use of EVs in the field of drug delivery.

Keywords

Drug delivery Endocytosis Extracellular vesicles (EVs) Regenerative medicine Target cells Therapeutic agents 

Abbreviations

ALIX

ALG-2-interacting protein X

APP

Amyloid precursor protein

ARF6

ADP-ribosylation factor 6

ARMMs

Arrestin domain-containing protein 1-mediated microvesicles

CXCR4

CXC chemokine receptor 4

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

HSP70

Heat shock 70 kDa protein

HSPG

Heparan sulfate proteoglycan

ICAM

Intercellular adhesion molecule

LBPA

Lyso-bis-phosphatidyl acid

LFA1

Lymphocyte function-associated antigen 1

MHC

Major histocompatibility complex

PECAM1

Platelet-endothelial cell adhesion molecule

PLD

Phospholipase D

PrP

Prion protein

ROCK

RHO-associated protein kinase

TCR

T cell receptor

TDP43

TAR DNA-binding protein 43

TFR

Transferrin receptor

TSG101

Tumor susceptibility gene 101 protein

TSPAN

Tetraspanin

VPS

Vacuolar protein sorting

Notes

Acknowledgments

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07045240).

References

  1. 1.
    Schorey JS, Cheng Y, Singh PP et al (2015) Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep 16(1):24–43PubMedGoogle Scholar
  2. 2.
    Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  3. 3.
    YáñezMó M, Siljander PRM, Andreu Z et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066Google Scholar
  4. 4.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1):255–289PubMedPubMedCentralGoogle Scholar
  5. 5.
    György B, Szabó TG, Pásztói M et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688PubMedPubMedCentralGoogle Scholar
  6. 6.
    Keller S, Sanderson MP, Stoeck A et al (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108PubMedGoogle Scholar
  7. 7.
    Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4(5):594–600PubMedGoogle Scholar
  8. 8.
    Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedGoogle Scholar
  9. 9.
    Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288PubMedGoogle Scholar
  10. 10.
    Niel GV, Angelo GD, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228PubMedGoogle Scholar
  11. 11.
    Beach A, Zhang HG, Ratajczak MZ et al (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7(1):14PubMedPubMedCentralGoogle Scholar
  12. 12.
    Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78PubMedGoogle Scholar
  13. 13.
    Blaser MC, Aikawa E (2018) Roles and regulation of extracellular vesicles in cardiovascular mineral metabolism. Front Cardiovasc Med 5:187PubMedPubMedCentralGoogle Scholar
  14. 14.
    Li W, Li C, Zhou T et al (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16(1):145PubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao M, Gao W, Papadimitriou JM et al (2018) Exosomes-the enigmatic regulators of bone homeostasis. Bone Res 6(1):36PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen C, Skog J, Hsu C-H et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10(4):505–511PubMedGoogle Scholar
  17. 17.
    Levänen B, Bhakta NR, Torregrosa Paredes P et al (2013) Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131(3):894–903PubMedPubMedCentralGoogle Scholar
  18. 18.
    Street JM, Barran PE, Mackay CL et al (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10(1):5PubMedPubMedCentralGoogle Scholar
  19. 19.
    Brown M, Johnson LA, Leone DA et al (2018) Lymphatic exosomes promote dendritic cell migration along guidance cues. J Cell Biol 217(6):2205–2221PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kesimer M, Scull M, Brighton B et al (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23(6):1858–1868PubMedPubMedCentralGoogle Scholar
  21. 21.
    Grigor’eva AE, Tamkovich SN, Eremina AV et al (2016) Characteristics of exosomes and microparticles discovered in human tears. Biomed Khim 62(1):99–106PubMedGoogle Scholar
  22. 22.
    Welch JL, Kaddour H, Schlievert PM et al (2018) Semen exosomes promote transcriptional silencing of HIV-1 by disrupting NF-κB/Sp1/Tat circuitry. J Virol 92:e00731–e00718PubMedPubMedCentralGoogle Scholar
  23. 23.
    Taylor DD, Gerçel-Taylor C (2005) Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 92(2):305–311PubMedPubMedCentralGoogle Scholar
  24. 24.
    Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571PubMedGoogle Scholar
  25. 25.
    Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978PubMedGoogle Scholar
  26. 26.
    Reinhardt TA, Lippolis JD, Nonnecke BJ et al (2012) Bovine milk exosome proteome. J Proteomic 75(5):1486–1492Google Scholar
  27. 27.
    Fernández-Llama P, Khositseth S, Gonzales PA et al (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77(8):736–742PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu CX, Liu ZF (2018) Proteomic profiling of sweat exosome suggests its involvement in skin immunity. J Invest Dermatol 138(1):89–97PubMedGoogle Scholar
  29. 29.
    Han Y, Jia L, Zheng Y et al (2018) Salivary Exosomes: Emerging roles in systemic disease. Int J Biol Sci 14(6):633–643PubMedPubMedCentralGoogle Scholar
  30. 30.
    Livshits MA, Livshts MA, Khomyakova E et al (2015) Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 5:17319PubMedGoogle Scholar
  31. 31.
    Helwa I, Cai J, Drewry MD et al (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One 12(1):e0170628PubMedPubMedCentralGoogle Scholar
  32. 32.
    Li P, Kaslan M, Lee SH et al (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bunggulawa EJ, Wang W, Yin T et al (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 16(1):81Google Scholar
  34. 34.
    Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med 20(8):822–832PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ionescu L, Byrne RN, van Haaften T et al (2012) Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol 303(11):L967–L977PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim SY, Burgess JK, Wang Y et al (2016) Atomized human amniotic mesenchymal stromal cells for direct delivery to the airway for treatment of lung injury. J Aerosol Med Pulm Drug Deliv 29(6):514–524PubMedGoogle Scholar
  37. 37.
    Gupta N, Su X, Popov B et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863PubMedGoogle Scholar
  38. 38.
    Antunes MA, Abreu SC, Cruz FF et al (2014) Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 15(1):118PubMedPubMedCentralGoogle Scholar
  39. 39.
    Sung DK, Chang YS, Ahn SY et al (2015) Optimal route for human umbilical cord blood-derived mesenchymal stem cell transplantation to protect against neonatal hyperoxic lung injury: Gene expression profiles and histopathology. PLoS One 10(8):e0135574PubMedPubMedCentralGoogle Scholar
  40. 40.
    Serrano-Mollar A, Nacher M, Gay-Jordi G et al (2007) Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 176(12):1261–1268PubMedGoogle Scholar
  41. 41.
    Tibboel J, Keijzer R, Reiss I et al (2013) Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD 11(3):310–318PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim YE, Park WS, Sung DK et al (2016) Intratracheal transplantation of mesenchymal stem cells simultaneously attenuates both lung and brain injuries in hyperoxic newborn rats. Pediatr Res 80(3):415–424PubMedGoogle Scholar
  43. 43.
    Monsel A, Zhu Y, Gennai S et al (2015) Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 192(3):324–336PubMedPubMedCentralGoogle Scholar
  44. 44.
    Willis GR, Fernandez-Gonzalez A, Anastas J et al (2018) Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med 197(1):104–116PubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee C, Mitsialis SA, Aslam M et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tan K, Choi H, Jiang X et al (2014) Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genom 15(1):587Google Scholar
  47. 47.
    Vaporidi K, Vergadi E, Kaniaris E et al (2012) Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Cell Mol Physiol 303(3):L199–L207Google Scholar
  48. 48.
    Sessa R, Hata A (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 3(2):315–328PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhu Y, Feng X, Abbott J et al (2014) Human mesenchymal stem cell microvesicles for treatment of escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125PubMedPubMedCentralGoogle Scholar
  50. 50.
    Song Y, Dou H, Li X et al (2017) Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells 35(5):1208–1221PubMedGoogle Scholar
  51. 51.
    Alexander M, Hu R, Runtsch MC et al (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6(1):7321PubMedPubMedCentralGoogle Scholar
  52. 52.
    Huang Y, Crawford M, Higuita-Castro N et al (2012) miR-146a regulates mechanotransduction and pressure-induced inflammation in small airway epithelium. FASEB J 26(8):3351–3364PubMedPubMedCentralGoogle Scholar
  53. 53.
    Ibrahim AGE, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619PubMedPubMedCentralGoogle Scholar
  54. 54.
    Teng X, Chen L, Chen W et al (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37(6):2415–2424PubMedGoogle Scholar
  55. 55.
    Khan M, Nickoloff E, Abramova T et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64PubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhao Y, Sun X, Cao W et al (2015) Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int 2015:12Google Scholar
  57. 57.
    Agarwal U, George A, Bhutani S et al (2017) Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell-derived exosomes from pediatric patients. Circ Res 120(4):701–712PubMedGoogle Scholar
  58. 58.
    Viñas JL, Burger D, Zimpelmann J et al (2016) Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney Int 90(6):1238–1250PubMedGoogle Scholar
  59. 59.
    Borges FT, Melo SA, Özdemir BC et al (2013) TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J Am Soc Nephrol 24(3):385–392PubMedGoogle Scholar
  60. 60.
    Tomasoni S, Longaretti L, Rota C et al (2013) Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 22(5):772–780PubMedGoogle Scholar
  61. 61.
    Zhou Y, Xu H, Xu W et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34PubMedPubMedCentralGoogle Scholar
  62. 62.
    Jiang Z, Liu Y, Niu X et al (2016) Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther 7(1):24PubMedPubMedCentralGoogle Scholar
  63. 63.
    Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G (2015) Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 13(1):261PubMedPubMedCentralGoogle Scholar
  64. 64.
    Tan C, Lai R, Wong W et al (2014) Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 5(3):76PubMedPubMedCentralGoogle Scholar
  65. 65.
    Nojima H, Freeman CM, Schuster RM et al (2016) Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol 64(1):60–68PubMedGoogle Scholar
  66. 66.
    Yan Y, Jiang W, Tan Y et al (2017) HucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther 25(2):465–479PubMedPubMedCentralGoogle Scholar
  67. 67.
    Nong K, Wang W, Niu X et al (2016) Hepatoprotective effect of exosomes from human-induced pluripotent stem cell–derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 18(12):1548–1559PubMedGoogle Scholar
  68. 68.
    Frohlich D, Kuo WP, Fruhbeis C et al (2014) Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc B Biol Sci 369(1652):20130510Google Scholar
  69. 69.
    Xin H, Li Y, Buller B et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564PubMedPubMedCentralGoogle Scholar
  70. 70.
    Takeda YS, Xu Q (2015) Neuronal differentiation of human mesenchymal stem cells using exosomes derived from differentiating neuronal cells. PLoS One 10(8):e0135111PubMedPubMedCentralGoogle Scholar
  71. 71.
    El Bassit G, Patel RS, Carter G et al (2017) MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology 158(1):183–195PubMedGoogle Scholar
  72. 72.
    Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6(4):1273–1285PubMedPubMedCentralGoogle Scholar
  73. 73.
    Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61(11):1795–1806PubMedGoogle Scholar
  74. 74.
    Goncalves MB, Malmqvist T, Clarke E et al (2015) Neuronal RARβ signaling modulates PTEN activity directly in neurons and via exosome transfer in astrocytes to prevent glial scar formation and induce spinal cord regeneration. J Neurosci 35(47):15731–15745PubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang Y, Chopp M, Zhang ZG et al (2017) Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int 111:69–81PubMedGoogle Scholar
  76. 76.
    Zhang Y, Chopp M, Liu XS et al (2017) Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 54(4):2659–2673Google Scholar
  77. 77.
    Hu L, Wang J, Zhou X et al (2016) Exosomes derived from human adipose mesenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 6(1):32993PubMedPubMedCentralGoogle Scholar
  78. 78.
    Liang X, Zhang L, Wang S (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189PubMedGoogle Scholar
  79. 79.
    Zhao B, Zhang Y, Han S et al (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48(2):121–132PubMedGoogle Scholar
  80. 80.
    Zhang J, Chen C, Hu B et al (2016) Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci 12(12):1472–1487PubMedPubMedCentralGoogle Scholar
  81. 81.
    Guo SC, Tao SC, Yin WJ et al (2017) Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 7(1):81–96PubMedPubMedCentralGoogle Scholar
  82. 82.
    Zhang B, Wang M, Gong A et al (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33(7):2158–2168PubMedGoogle Scholar
  83. 83.
    Shabbir A, Cox A, Rodriguez-Menocal L et al (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24(14):1635–1647PubMedPubMedCentralGoogle Scholar
  84. 84.
    Li X, Liu L, Yang J et al (2016) Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 8:72–82PubMedPubMedCentralGoogle Scholar
  85. 85.
    Burns C, Hall ST, Smith R et al (2015) Cytokine levels in late pregnancy: are female infants better protected against inflammation? Front Immunol 6:318PubMedPubMedCentralGoogle Scholar
  86. 86.
    Guo SX, Jin YY, Fang Q et al (2015) Beneficial effects of hydrogen-rich saline on early burn-wound progression in rats. PLoS One 10(4):e0124897PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhang B, Wu X, Zhang X et al (2015) Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl Med 4(5):513–522PubMedPubMedCentralGoogle Scholar
  88. 88.
    Han K-Y, Tran JA, Chang J-H et al (2017) Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization. Sci Rep 7(1):40548PubMedPubMedCentralGoogle Scholar
  89. 89.
    Leoni G, Neumann P-A, Kamaly N et al (2015) Annexin A1–containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J Clin Invest 125(3):1215–1227PubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhang J, Guan J, Niu X et al (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13(1):49PubMedPubMedCentralGoogle Scholar
  91. 91.
    Rajendran RL, Gangadaran P, Bak SS et al (2017) Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci Rep 7(1):15560PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhou L, Wang H, Jing J et al (2018) Regulation of hair follicle development by exosomes derived from dermal papilla cells. Biochem Biophys Res Commun 500(2):325–332PubMedGoogle Scholar
  93. 93.
    Meel RVD, Fens MHAM, Vader P (2014) Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J Control Release 195:72–85PubMedGoogle Scholar
  94. 94.
    Andaloussi SEL, Mäger I, Breakefield XO et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357Google Scholar
  95. 95.
    Johnsen KB, Gudbergsson JM, Skov MN et al (2014) A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 1846(1):75–87Google Scholar
  96. 96.
    Alvarez-Erviti L, Seow Y, Yin H et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedGoogle Scholar
  97. 97.
    Wahlgren J, Karlson TDL, Brisslert M et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40(17):e130PubMedPubMedCentralGoogle Scholar
  98. 98.
    Shtam TA, Varfolomeeva EY, Semenova EV et al (2008) Role of human RAD51 recombinase in the cycle checkpoint and survival of a cell. Cell Tissue Biol 2(5):463–467Google Scholar
  99. 99.
    Shtam TA, Kovalev RA, Varfolomeeva E (2013) Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 11(1):88PubMedPubMedCentralGoogle Scholar
  100. 100.
    Banizs A, Huang T, Dryden K et al (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomed 9(1):4223Google Scholar
  101. 101.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedPubMedCentralGoogle Scholar
  102. 102.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedPubMedCentralGoogle Scholar
  103. 103.
    Ohno S, Takanashi M, Sudo K et al (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191PubMedGoogle Scholar
  104. 104.
    Woodburn JR (1999) The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 82(2–3):241–250PubMedGoogle Scholar
  105. 105.
    Tian T, Zhang H-X, He C-P et al (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149PubMedGoogle Scholar
  106. 106.
    Sun D, Zhuang X, Zhang S et al (2013) Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev 65(3):342–347PubMedGoogle Scholar
  107. 107.
    Mizrak A, Bolukbasi MF, Ozdener GB et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit Schwannoma tumor growth. Mol Ther 21(1):101–108PubMedGoogle Scholar
  108. 108.
    Katakowski M, Buller B, Zheng X et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204PubMedPubMedCentralGoogle Scholar
  109. 109.
    Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13(11):813–827PubMedPubMedCentralGoogle Scholar
  110. 110.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627PubMedGoogle Scholar
  111. 111.
    Upadhyay RK (2014) Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014:869269PubMedPubMedCentralGoogle Scholar
  112. 112.
    Lässer C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15(1):103–117PubMedGoogle Scholar
  113. 113.
    Chen CC, Liu L, Ma F et al (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529PubMedPubMedCentralGoogle Scholar
  114. 114.
    Théry C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3(15):15PubMedPubMedCentralGoogle Scholar
  115. 115.
    Yuan D, Zhao Y, Banks WA et al (2017) Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142:1–12PubMedPubMedCentralGoogle Scholar
  116. 116.
    Ashraf GM, Tabrez S, Jabir NR et al (2015) An overview on global trends in nanotechnological approaches for Alzheimer therapy. Curr Drug Metab 16:719–727PubMedGoogle Scholar
  117. 117.
    Ansari SA, Satar R, Perveen A et al (2017) Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr Opin Psychiatry 30(2):128–135PubMedGoogle Scholar
  118. 118.
    Sato YT, Umezaki K, Sawada S et al (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6(1):21933PubMedPubMedCentralGoogle Scholar
  119. 119.
    Scheuner D, Eckman C, Jensen M et al (1996) Secreted amyloid β–protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870PubMedGoogle Scholar
  120. 120.
    Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774PubMedPubMedCentralGoogle Scholar
  121. 121.
    Yuyama K, Sun H, Sakai S et al (2014) Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289(35):24488–24498PubMedPubMedCentralGoogle Scholar
  122. 122.
    Wu DC, Teismann P, Tieu K et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci 100(10):6145–6150PubMedGoogle Scholar
  123. 123.
    Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 48(1):1–19PubMedGoogle Scholar
  124. 124.
    Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32(2):114–118PubMedGoogle Scholar
  125. 125.
    Haney MJ, Klyachko NL, Zhao Y et al (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30PubMedPubMedCentralGoogle Scholar
  126. 126.
    Cooper JM, Wiklander PBO, Nordin JZ et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29(12):1476–1485PubMedPubMedCentralGoogle Scholar
  127. 127.
    Armstrong JPK, Holme MN, Stevens MM (2017) Re-engineering extracellular vesicles as smart nanoscale therapeutics. ACS Nano 11(1):69–83PubMedPubMedCentralGoogle Scholar
  128. 128.
    Ingato D, Lee JU, Sim SJ et al (2016) Good things come in small packages: Overcoming challenges to harness extracellular vesicles for therapeutic delivery. J Control Release 241:174–185PubMedGoogle Scholar
  129. 129.
    Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2(1):19861Google Scholar
  130. 130.
    Witwer KW, Buzás EI, Bemis LT et al (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2(1):20360Google Scholar
  131. 131.
    Théry C, Amigorena S, Raposo G et al (2006) Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr Protoc Cell Biol 30(1):3–22Google Scholar
  132. 132.
    Bobrie A, Colombo M, Krumeich S et al (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1(1):18397Google Scholar
  133. 133.
    Alvarez ML, Khosroheidari M, Kanchi Ravi R et al (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82(9):1024–1032PubMedGoogle Scholar
  134. 134.
    Zhang Z, Wang C, Li T et al (2014) Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes. Oncol Lett 8(4):1701–1706PubMedPubMedCentralGoogle Scholar
  135. 135.
    Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14(3):195–208PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Md. Asadujjaman
    • 1
  • Dong-Jin Jang
    • 2
  • Kwan Hyung Cho
    • 3
  • Seung Rim Hwang
    • 1
  • Jun-Pil Jee
    • 1
    Email author
  1. 1.College of PharmacyChosun UniversityGwangjuRepublic of Korea
  2. 2.Department of Pharmaceutical EngineeringInje UniversityGimhaeRepublic of Korea
  3. 3.Department of Pharmacy, College of PharmacyInje UniversityGimhaeRepublic of Korea

Personalised recommendations