Advertisement

RF Performance of Ultra-wide Bandgap HEMTs

  • Rajan Singh
  • T. R. LenkaEmail author
  • D. Panda
  • R. T. Velpula
  • B. Jain
  • H. Q. T. Bui
  • H. P. T. Nguyen
Chapter
  • 54 Downloads

Abstract

In the current scenario of high-speed electronics technology, many application areas—broadband Internet access, fifth-generation (4G/5G) mobile systems, and cutting-edge military applications—are realizing very-fast to reality. To cater these ever-increasing demands, radio-frequency (RF) and microwave power amplifiers are in prime-attention, and will be constantly evaluated on price versus performance metrics. Ultra-wide bandgap (UWBG) high electron mobility transistors (HEMTs) are promising candidates for switching power applications owing to very-high breakdown strength of the material. And higher values of energy band gap (Eg) and electron mobility enabled low on-resistance (RON) guarantees superior power handling capability. UWBG HEMTs having two-dimensional electron gas (2DEG) channel with high carrier concentration and high electron mobility are fast gaining space in high frequency and power switching applications. Also, these UWBG materials having large optical phonon energy, Eop ~92 meV (GaN), ~45 meV (β-Ga2O3) make them most suitable semiconductor materials for the imminent terahertz (THz, 1012 Hz) frequency applications: THz imaging and spectroscopy. In this paper, we present latest technological developments of the gallium nitride (GaN)- and beta-phase of gallium oxide (β-Ga2O3)-based HEMTs, with careful and quantitative investigation of their suitability toward radio frequency (RF), high power device applications, and THz emerging applications.

Keywords

Ultra-wideband gap Gallium nitride Gallium oxide RF performance Terahertz Imaging Spectroscopy Bandwidth High electron mobility transistor HEMT 

Notes

Acknowledgements

This publication is an outcome of the R&D work undertaken by the project under the Visvesvaraya Ph.D. Scheme of Ministry of Electronics and Information Technology (MeitY), Govt. of India, being implemented by Digital India Corporation. Acknowledgement also goes to New Jersey Institute of Technology (NJIT), Newark, USA, for facilitating the visit of T. R. Lenka for collaborative research work.

References

  1. 1.
    E.O. Johnson, Physical limitation on frequency and power parameters of transistors. RCA Rev. 163–176 (1965)Google Scholar
  2. 2.
    B.J. Baliga, Semiconductors for high-voltage, vertical channel field-effect transistors. J. Appl. Phys. 53(3), 1759–1764 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    B.J. Baliga, Power semiconductor device figure of merit for high-frequency applications. IEEE Electron Device Lett. 10(10), 455–457 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    R. Reiner, P. Waltereit, F. Benkhelifa, S. Muller, S. Müller, H. Walcher, S. Wagner, R. Quay, M. Schlechtweg, O. Ambacher, Fractal structures for low-resistance large area AlGaN/GaN power transistors, in 2012 24th International Symposium on Power Semiconductor Devices and ICs, IEEE, 3 June 2012, pp. 341–344Google Scholar
  6. 6.
    U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)CrossRefGoogle Scholar
  7. 7.
    J.H. Choi, High-speed devices and circuits with THz applications (CRC Press, 2014)Google Scholar
  8. 8.
    F. Medjdoub, Gallium nitride (GaN): physics, devices, and technology. (CRC Press, 2015)Google Scholar
  9. 9.
    J.L. Prince, J.M. Links, Medical imaging signals and systems (Pearson Prentice Hall, Upper Saddle River, 2006)Google Scholar
  10. 10.
    X. Wan, W.S. Zhou, S. Ren, D.G. Liu, J. Xu, H.L. Bo, E.X. Zhang, R.D. Schrimpf, D.M. Fleetwood, T.P. Ma, SEB hardened power MOSFETs with high-K dielectrics. IEEE Trans. Nucl. Sci. 62(6), 2830–2836 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    K. Ahi, Review of GaN-based devices for terahertz operation. Opt. Eng. 56(9), 090901 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Asif Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994)Google Scholar
  13. 13.
    Y.F. Wu, B.P. Keller, S. Keller, D. Kapolnek, S.P. Denbaars, U.K. Mishra, Measured microwave power performance of AlGaN/GaN MODFET. IEEE Electron Device Lett. 17(9), 455–457 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Khan, M.S. Shur, Q.C. Chen, J.N. Kuznia, Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron. Lett. 30(25), 2175–2176 (1994)CrossRefGoogle Scholar
  15. 15.
    S.C. Binari, K. Ikossi, J.A. Roussos, W. Kruppa, D. Park, H.B. Dietrich, D.D. Koleske, A.E. Wickenden, R.L. Henry, Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 465–471 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Green, K.K. Chu, E.M. Chumbes, J.A. Smart, J.R. Shealy, L.F. Eastman, The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 21(6), 268–270 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Y.F. Wu, D. Kapolnek, J. Ibbetson, N.Q. Zhang, P. Parikh, B.P. Keller, U.K. Mishra, High Al-content AlGaN/GaN HEMTs on SiC substrates with very high power performance, in International Electron Devices Meeting 1999, Technical Digest (Cat. No. 99CH36318), IEEE, 5 Dec 1999, pp. 925–927Google Scholar
  18. 18.
    N.X. Nguyen, M. Micovic, W.S. Wong, P. Hashimoto, L.M. McCray, P. Janke, C. Nguyen, High performance microwave power GaN/AlGaN MODFETs grown by RF-assisted MBE. Electron. Lett. 36(5), 468–469 (2000)CrossRefGoogle Scholar
  19. 19.
    Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue, M. Kuzuhara, 10-W/mm AlGaN-GaN HFET with a field modulating plate. IEEE Electron Device Lett. 24(5), 289–291 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Shealy, V. Kaper, V. Tilak, T. Prunty, J.A. Smart, B. Green, L.F. Eastman, An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer. J. Phys. Condens. Matter 14(13), 3499 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    W.L. Pribble, J.W. Palmour, S.T. Sheppard, R.P. Smith, S.T. Allen, T.J. Smith, Z. Ring, J.J. Sumakeris, A.W. Saxler, J.W. Milligan, Applications of SiC MESFETs and GaN HEMTs in power amplifier design, in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), IEEE, vol. 3, 2 June 2002, pp. 1819–1822Google Scholar
  22. 22.
    Y.F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, P. Parikh, 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 25(3), 117–119 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Okamoto, Y. Ando, K. Hataya, T. Nakayama, H. Miyamoto, T. Inoue, M. Senda, K. Hirata, M. Kosaki, N. Shibata, M. Kuzuhara, A 149 W recessed-gate AlGaN/GaN FP-FET, in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), IEEE, vol. 3, 6 June 2004, pp. 1351–1354Google Scholar
  24. 24.
    Y.F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, 40-W/mm double field-plated GaN HEMTs, in 2006 64th Device Research Conference, IEEE, 26 June 2006, pp. 151–152Google Scholar
  25. 25.
    M.Y. Kao, C. Lee, R. Hajji, P. Saunier, H.Q. Tserng, AlGaN/GaN HEMTs with PAE of 53% at 35 GHz for HPA and multi-function MMIC applications, in 2007 IEEE/MTT-S International Microwave Symposium, IEEE, 3 June 2007, pp. 627–629Google Scholar
  26. 26.
    Y. Murase, A. Wakejima, T. Inoue, K. Yamanoguchi, M. Tanomura, T. Nakayama, Y. Okamoto, K. Ota, Y. Ando, N. Kuroda, K. Matsunaga, CW 20-W AlGaN/GaN FET power amplifier for quasi-millimeter wave applications, in 2007 IEEE Compound Semiconductor Integrated Circuits Symposium, IEEE, 14 Oct 2007, pp. 1–4Google Scholar
  27. 27.
    D.C. Dumka, T.M. Chou, F. Faili, D. Francis, F. Ejeckam, AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10 GHz. Electron. Lett. 49(20), 1298–1299 (2013)CrossRefGoogle Scholar
  28. 28.
    P.C. Chao, K. Chu, J. Diaz, C. Creamer, S. Sweetland, R. Kallaher, C. McGray, G.D. Via, J. Blevins, GaN-on-diamond HEMTs with 11 W/mm output power at 10GHz. MRS Advances 1(2), 147–155 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Micovic, D.F. Brown, D. Regan, J. Wong, Y. Tang, F. Herrault, D. Santos, S.D. Burnham, J. Tai, E. Prophet, I. Khalaf, High frequency GaN HEMTs for RF MMIC applications, in 2016 IEEE International Electron Devices Meeting (IEDM), IEEE, 3 Dec 2016, pp. 3–3Google Scholar
  30. 30.
    B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, U.K. Mishra, Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans. Electron Devices 65(1), 45–50 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, Y. Hao, High RF performance AlGaN/GaN HEMT fabricated by recess-arrayed ohmic contact technology. IEEE Electron Device Lett. 39(6), 811–814 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    W. Lu, V. Kumar, E.L. Piner, I. Adesida, DC, RF, and microwave noise performance of AlGaN-GaN field effect transistors dependence of aluminum concentration. IEEE Trans. Electron Devices 50(4), 1069–1074 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    T. Palacios, C.S. Suh, A. Chakraborty, S. Keller, S.P. DenBaars, U.K. Mishra, High-performance E-mode AlGaN/GaN HEMTs. IEEE Electron Device Lett. 27(6), 428–430 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Chung, W.E. Hoke, E.M. Chumbes, T. Palacios, AlGaN/GaN HEMT With 300-GHz fmax. IEEE Electron Device Lett. 31(3), 195–197 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    D. Denninghoff, J. Lu, M. Laurent, E. Ahmadi, S. Keller, U.K. Mishra, N-polar GaN/InAlN MIS-HEMT with 400-GHz fmax, in 70th Device Research Conference, IEEE, 18 June 2012, pp. 151–152Google Scholar
  36. 36.
    A.G. Baca, B.A. Klein, J.R. Wendt, S.M. Lepkowski, C.D. Nordquist, A.M. Armstrong, A.A. Allerman, E.A. Douglas, R.J. Kaplar, RF performance of Al 0.85 Ga 0.15 N/Al 0.70 Ga 0.30 N high electron mobility transistors with 80-nm gates. IEEE Electron Device Lett. 40(1), 17–20 (2018)Google Scholar
  37. 37.
    D. Qiao, Z.F. Guan, J. Carlton, S.S. Lau, G.J. Sullivan, Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the “advancing” Al/Ti metallization. Appl. Phys. Lett. 74(18), 2652–2654 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, U. Mishra, Ion implanted AlGaN-GaN HEMTs with nonalloyed ohmic contacts. IEEE Electron Device Lett. 26(5), 283–285 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    F. Recht, L. McCarthy, S. Rajan, A. Chakraborty, C. Poblenz, A. Corrion, J.S. Speck, U.K. Mishra, Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperatureGoogle Scholar
  40. 40.
    F. Recht, L. McCarthy, L. Shen, C. Poblenz, A. Corrion, J.S. Speck, U.K. Mishra, AlGaN/GaN HEMTs with large angle implanted nonalloyed ohmic contacts, in 2007 65th Annual Device Research Conference, IEEE, 18 June 2007, pp. 37–38Google Scholar
  41. 41.
    X.C. Fu, Y. Lv, L.J. Zhang, T. Zhang, X.J. Li, X. Song, Z. Zhang, Y. Fang, Z. Feng, High-frequency InAlN/GaN HFET with fmax over 400 GHz. Electron. Lett. 54(12), 783–785 (2018)CrossRefGoogle Scholar
  42. 42.
    M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71(15), 2465 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30(12), 1319–1337 (2009)Google Scholar
  44. 44.
    F. Friederich, W. Von Spiegel, M. Bauer, F. Meng, M.D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, THz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol 1(1), 183–200 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    J.D. Sun, Y.F. Sun, D.M. Wu, Y. Cai, H. Qin, B.S. Zhang, High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl. Phys. Lett. 100(1), 013506 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    J.D. Sun, H. Qin, R.A. Lewis, Y.F. Sun, X.Y. Zhang, Y. Cai, D.M. Wu, B.S. Zhang, Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector. Appl. Phys. Lett. 100(17), 173513 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, Exploration of terahertz imaging with silicon MOSFETs. J. Infrared Millim. Terahertz Waves 35(1), 63–80 (2014)CrossRefGoogle Scholar
  48. 48.
    H. Hou, Z. Liu, J.H. Teng, T. Palacio, S.J. Chua, Modelling of GaN HEMTs as terahertz detectors based on self-mixing. Proc. Eng. 1(141), 98–102 (2016)CrossRefGoogle Scholar
  49. 49.
    Q. Li, N. An, Y. Tang, J. Jiang, L. Li, J. Zeng, W. Tan, Metal-semiconductor-metal (MSM) varactor based on AlGaN/GaN heterostructure with cutoff frequency of 914.5 GHz for terahertz frequency multiplication, in 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), IEEE, 24 Nov 2018, pp. 86–89Google Scholar
  50. 50.
    M. Bauer, A. Rämer, S.A. Chevtchenko, K. Osipov, D. Čibiraitė, S. Pralgauskaité, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, H.G. Roskos, A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. Terahertz Sci. Technol. (2019)Google Scholar
  51. 51.
    M. Higashiwaki, G.H. Jessen, Guest editorial: the dawn of gallium oxide microelectronics. Appl. Phys. Lett. 112(6), 060401.  https://doi.org/10.1063/1.5017845
  52. 52.
    S.J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124(22), 220901 (2018)CrossRefGoogle Scholar
  53. 53.
    J. Yang, F. Ren, M. Tadjer, S.J. Pearton, A. Kuramata, Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW cm−2 figure-of-merit. AIP Advances 8(5), 055026 (2018)Google Scholar
  54. 54.
    H. Dong, H. Xue, Q. He, Y. Qin, G. Jian, S. Long, M. Liu, Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semiconductors 40(1), 011802 (2019)ADSCrossRefGoogle Scholar
  55. 55.
    A.J. Green, K.D. Chabak, M. Baldini, N. Moser, R. Gilbert, R.C. Fitch, G. Wagner, Z. Galazka, J. Mccandless, A. Crespo, K. Leedy, β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett. 38(6), 790–793 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    G. Jessen, K. Chabak, A. Green, N. Moser, J. McCandless, K. Leedy, A. Crespo, S. Tetlak, Gallium oxide technologies and applications, in 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), IEEE, 22 Oct 2017, pp. 1–4Google Scholar
  57. 57.
    M. Singh, M.A. Casbon, M.J. Uren, J.W. Pomeroy, S. Dalcanale, S. Karboyan, P.J. Tasker, M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett. 39(10), 1572–1575 (2018)ADSCrossRefGoogle Scholar
  58. 58.
    M.D. Santia, N. Tandon, J.D. Albrecht, Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107(4), 041907 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    S. Kumar, R. Soman, A.S. Pratiyush, R. Muralidharan, D.N. Nath, A performance comparison between β-Ga2O3 and GaN HEMTs. IEEE Trans. Electron Devices 66(8), 3310–3317 (2019)ADSCrossRefGoogle Scholar
  60. 60.
    R. Gaska, J.W. Yang, A. Osinsky, Q. Chen, M.A. Khan, A.O. Orlov, G.L. Snider, M.S. Shur, Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates. Appl. Phys. Lett. 72(6), 707–709 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    L. Ardaravičius, A. Matulionis, J. Liberis, O. Kiprijanovic, M. Ramonas, L.F. Eastman, J.R Shealy, A. Vertiatchik, Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. Lett. 83(19) (2003) 4038–4040; F. Medjdoub, Gallium nitride (GaN): Physics, devices, and technology. CRC Press (2015)Google Scholar
  62. 62.
    Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 29(23), 234001 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122(3), 035702 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    Y. Zhang, Z. Xia, J. Mcglone, W. Sun, C. Joishi, A.R. Arehart, S.A. Ringel, S. Rajan, Evaluation of low-temperature saturation velocity in β-(AlxGa1–x)2O3/Ga2O3 modulation-doped field-effect transistors. IEEE Trans. Electron Devices 66(3), 1574–1578 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rajan Singh
    • 1
  • T. R. Lenka
    • 1
    Email author
  • D. Panda
    • 2
  • R. T. Velpula
    • 3
  • B. Jain
    • 3
  • H. Q. T. Bui
    • 3
  • H. P. T. Nguyen
    • 3
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology SilcharSilcharIndia
  2. 2.School of ElectronicsVIT-AP UniversityAmaravatiIndia
  3. 3.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations