Advertisement

Second-Order Min-Consensus

  • Yinyan Zhang
  • Shuai Li
Chapter
  • 31 Downloads

Abstract

In this chapter, we present a second-order min-consensus protocol with provable convergence. It is not trivial to extend the min-consensus result for the first-order case to the second-order one. Under certain conditions, the presented protocol can guarantee global asymptotic min-consensus, even for the case with jointly connected communication graphs. An illustrative example is presented to verify the theoretical results and the efficiency of the presented protocol.

References

  1. 1.
    Y. Ren, H. Chao, W. Bourgeous, N. Sorensen, Y. Chen, Experimental validation of consensus algorithms for multivehicle cooperative control. IEEE Trans. Control Syst. Technol. 16(4), 745–752 (2008)CrossRefGoogle Scholar
  2. 2.
    Y. Xu, W. Liu, J. Gong, Stable multi-agent-based load shedding algorithm for power systems. IEEE Trans. Power Syst. 26(4), 2006–2014 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Schenato, F. Fiorentin, Average TimeSynch: a consensus-based protocol for clock synchronization in wireless sensor networks. Automatica 47(9), 1878–1886 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    L. Jin, S. Li, Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 693–701 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Jin, S. Li, H. M. La, X. Zhang, B. Hu, Dynamic task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica 100, 75–81 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    L. Jin, S. Li, B. Hu, C. Yi, Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291, 50–58 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Jin, S. Li, L. Xiao, R. Lu, B. Liao, Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1715–1724 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Li, M. Zhou, X. Luo, Z. You, Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    S. Li, J. He, Y. Li, M.U. Rafique, Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Jin, S. Li, X. Luo, M. Shang, Nonlinearly-activated noise-tolerant zeroing neural network for distributed motion planning of multiple robot arms, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2017), pp. 4165–4170Google Scholar
  11. 11.
    M.U. Khan, S. Li, Q. Wang, Z. Shao, Distributed multirobot formation and tracking control in cluttered environments. ACM Trans. Auton. Adapt. Syst. 11(2), 1–22 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Li, Z. Wang, Y. Li, Using Laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process. Lett. 37(3), 411–424 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    H. Rezaee, F. Abdollahi, Average consensus over high-order multiagent systems. IEEE Trans. Autom. Control 60(11), 3047–3052 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. Cheng, Z.G. Hou, M. Tan, X. Wang, Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises. IEEE Trans. Autom. Control 56(8), 1958–1963 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    L. Macellari, Y. Karayiannidis, D.V. Dimarogonas, Multi-agent second order average consensus with prescribed transient behavior. IEEE Trans. Autom. Control 62(10), 5282–5288 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    L. Jin, S. Li, B. Hu, M. Liu, A survey on projection neural networks and their applications. Appl. Soft Comput. 76, 533–544 (2019)CrossRefGoogle Scholar
  18. 18.
    B. Liao, Q. Xiang, S. Li, Bounded Z-type neurodynamics with limited-time convergence and noise tolerance for calculating time-dependent Lyapunov equation. Neurocomputing 325, 234–241 (2019)CrossRefGoogle Scholar
  19. 19.
    P.S. Stanimirovic, V.N. Katsikis, S. Li, Integration enhanced and noise tolerant ZNN for computing various expressions involving outer inverses. Neurocomputing 329, 129–143 (2019)CrossRefGoogle Scholar
  20. 20.
    Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, D. Huang, Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 329, 255–266 (2019)CrossRefGoogle Scholar
  21. 21.
    L. Xiao, K. Li, Z. Tan, Z. Zhang, B. Liao, K. Chen, L. Jin, S. Li, Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 142, 35–40 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Chen, S. Li, Q. Wu, Rejecting chaotic disturbances using a super-exponential-zeroing neurodynamic approach for synchronization of chaotic sensor systems. Sensors 19(1), 74 (2019)CrossRefGoogle Scholar
  23. 23.
    Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A.H. Khan, D. Chen, Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors 19(8), 1758 (2019)CrossRefGoogle Scholar
  24. 24.
    Q. Xiang, B. Liao, L. Xiao, L. Lin, S. Li, Discrete-time noise-tolerant Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23(3), 755–766 (2019)zbMATHCrossRefGoogle Scholar
  25. 25.
    Z. Zhang, S. Chen, S. Li, Compatible convex-nonconvex constrained QP-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Control Syst. Technol. 27(3), 1250–1258 (2019)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, S. Li, X. Zhou, Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit. IEEE Trans. Ind. Electron. 66(5), 3573–3582 (2019)CrossRefGoogle Scholar
  27. 27.
    L. Jin, S. Li, B. Hu, M. Liu, J. Yu, A noise-suppressing neural algorithm for solving the time-varying system of linear equations: a control-based approach. IEEE Trans. Ind. Inf. 15(1), 236–246 (2019)CrossRefGoogle Scholar
  28. 28.
    Y. Li, S. Li, B. Hannaford, A model-based recurrent neural network with randomness for efficient control with applications. IEEE Trans. Ind. Inf. 15(4), 2054–2063 (2019)CrossRefGoogle Scholar
  29. 29.
    L. Xiao, S. Li, F. Lin, Z. Tan, A.H. Khan, Zeroing neural dynamics for control design: comprehensive analysis on stability, robustness, and convergence speed. IEEE Trans. Ind. Inf. 15(5), 2605–2616 (2019)CrossRefGoogle Scholar
  30. 30.
    S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, X. Liu, Reconfigurable battery systems: a survey on hardware architecture and research challenges. ACM Trans. Des. Autom. Electron. Syst. 24(2), 19:1–19:27 (2019)CrossRefGoogle Scholar
  31. 31.
    S. Li, Z. Shao, Y. Guan, A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 932–941 (2019)CrossRefGoogle Scholar
  32. 32.
    L. Jin, S. Li, H. Wang, Z. Zhang, Nonconvex projection activated zeroing neurodynamic models for time-varying matrix pseudoinversion with accelerated finite-time convergence. Appl. Soft Comput. 62, 840–850 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Liu, S. Li, X. Li, L. Jin, C. Yi, Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking. Complexity 2018, 4573631:1–4573631:12 (2018)zbMATHGoogle Scholar
  34. 34.
    D. Chen, Y. Zhang, S. Li, Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275, 845–858 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)CrossRefGoogle Scholar
  36. 36.
    L. Xiao, S. Li, J. Yang, Z. Zhang, A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125–132 (2018)CrossRefGoogle Scholar
  37. 37.
    P.S. Stanimirovic, V.N. Katsikis, S. Li, Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 316, 124–134 (2018)CrossRefGoogle Scholar
  38. 38.
    X. Li, J. Yu, S. Li, L. Ni, A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 317, 70–78 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Xiao, B. Liao, S. Li, K. Chen, Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations. Neural Netw. 98, 102–113 (2018)CrossRefGoogle Scholar
  40. 40.
    L. Xiao, Z. Zhang, Z. Zhang, W. Li, S. Li, Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185–196 (2018)CrossRefGoogle Scholar
  41. 41.
    Z. Zhang, Y. Lu, L. Zheng, S. Li, Z. Yu, Y. Li, A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 63(12), 4110–4125 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Z. Zhang, Y. Lin, S. Li, Y. Li, Z. Yu, Y. Luo, Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Technol. 26(4), 1345–1357 (2018)CrossRefGoogle Scholar
  43. 43.
    X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)CrossRefGoogle Scholar
  44. 44.
    L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inf. 14(1), 98–105 (2018)CrossRefGoogle Scholar
  45. 45.
    L. Jin, S. Li, B. Hu, RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Trans. Ind. Inf. 14(1), 189–199 (2018)CrossRefGoogle Scholar
  46. 46.
    X. Luo, M. Zhou, S. Li, M. Shang, An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications. IEEE Trans. Ind. Inf. 14(5), 2011–2022 (2018)CrossRefGoogle Scholar
  47. 47.
    D. Chen, Y. Zhang, S. Li, Tracking control of robot manipulators with unknown models: a Jacobian-matrix-adaption method. IEEE Trans. Ind. Inf. 14(7), 3044–3053 (2018)CrossRefGoogle Scholar
  48. 48.
    J. Li, Y. Zhang, S. Li, M. Mao, New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inf. 14(8), 3416–3425 (2018)CrossRefGoogle Scholar
  49. 49.
    S. Li, H. Wang, M.U. Rafique, A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1908–1918 (2018)MathSciNetCrossRefGoogle Scholar
  50. 50.
    H. Wang, P.X. Liu, S. Li, D. Wang, Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)MathSciNetCrossRefGoogle Scholar
  51. 51.
    S. Li, M. Zhou, X. Luo, Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Y. Li, S. Li, B. Hannaford, A novel recurrent neural network for improving redundant manipulator motion planning completeness, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2018), pp. 2956–2961Google Scholar
  53. 53.
    M.A. Mirza, S. Li, L. Jin, Simultaneous learning and control of parallel Stewart platforms with unknown parameters. Neurocomputing 266, 114–122 (2017)CrossRefGoogle Scholar
  54. 54.
    L. Jin, S. Li, Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 267, 107–113 (2017)CrossRefGoogle Scholar
  55. 55.
    L. Jin, S. Li, B. Liao, Z. Zhang, Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)CrossRefGoogle Scholar
  56. 56.
    L. Jin, Y. Zhang, S. Li, Y. Zhang, Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans. Autom. Control 62(2), 992–997 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Z. You, M. Zhou, X. Luo, S. Li, Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)CrossRefGoogle Scholar
  58. 58.
    L. Jin, S. Li, H. M. La, X. Luo, Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)CrossRefGoogle Scholar
  59. 59.
    S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, N. Guan, A robust algorithm for state-of-charge estimation with gain optimization. IEEE Trans. Ind. Inf. 13(6), 2983–2994 (2017)CrossRefGoogle Scholar
  60. 60.
    X. Luo, J. Sun, Z. Wang, S. Li, M. Shang, Symmetric and nonnegative latent factor models for undirected, high-dimensional, and sparse networks in industrial applications. IEEE Trans. Ind. Inf. 13(6), 3098–3107 (2017)CrossRefGoogle Scholar
  61. 61.
    S. Li, Y. Zhang, L. Jin, Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)MathSciNetCrossRefGoogle Scholar
  62. 62.
    X. Luo, S. Li, Non-negativity constrained missing data estimation for high-dimensional and sparse matrices, in Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE) (IEEE, Piscataway, 2017), pp. 1368–1373Google Scholar
  63. 63.
    Y. Li, S. Li, D. E. Caballero, M. Miyasaka, A. Lewis, B. Hannaford, Improving control precision and motion adaptiveness for surgical robot with recurrent neural network, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2017), pp. 3538–3543Google Scholar
  64. 64.
    X. Luo, M. Zhou, M. Shang, S. Li, Y. Xia, A novel approach to extracting non-negative latent factors from non-negative big sparse matrices. IEEE Access 4, 2649–2655 (2016)CrossRefGoogle Scholar
  65. 65.
    M. Mao, J. Li, L. Jin, S. Li, Y. Zhang, Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)CrossRefGoogle Scholar
  66. 66.
    Y. Huang, Z. You, X. Li, X. Chen, P. Hu, S. Li, X. Luo, Construction of reliable protein-protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)CrossRefGoogle Scholar
  67. 67.
    X. Luo, M. Zhou, H. Leung, Y. Xia, Q. Zhu, Z. You, S. Li, An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)CrossRefGoogle Scholar
  68. 68.
    S. Li, Z. You, H. Guo, X. Luo, Z. Zhao, Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)CrossRefGoogle Scholar
  69. 69.
    L. Jin, Y. Zhang, S. Li, Y. Zhang, Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63(11), 6978–6988 (2016)CrossRefGoogle Scholar
  70. 70.
    X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, Q. Zhu, A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2016)MathSciNetCrossRefGoogle Scholar
  71. 71.
    L. Jin, Y. Zhang, S. Li, Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)CrossRefGoogle Scholar
  72. 72.
    X. Luo, M. Shang, S. Li, Efficient extraction of non-negative latent factors from high-dimensional and sparse matrices in industrial applications, in Proceedings of the IEEE 16th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2016), pp. 311–319Google Scholar
  73. 73.
    X. Luo, S. Li, M. Zhou, Regularized extraction of non-negative latent factors from high-dimensional sparse matrices, in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2016), pp. 1221–1226Google Scholar
  74. 74.
    X. Luo, Z. Ming, Z. You, S. Li, Y. Xia, H. Leung, Improving network topology-based protein interactome mapping via collaborative filtering. Knowl.-Based Syst. 90, 23–32 (2015)CrossRefGoogle Scholar
  75. 75.
    X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, An efficient second-order approach to factorize sparse matrices in recommender systems. IEEE Trans. Ind. Inf. 11(4), 946–956 (2015)CrossRefGoogle Scholar
  76. 76.
    L. Wong, Z. You, S. Li, Y. Huang, G. Liu, Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor, in Proceedings of the International Conference on Intelligent Computing (Springer, Cham, 2015), pp. 713–720Google Scholar
  77. 77.
    Z. You, J. Yu, L. Zhu, S. Li, Z. Wen, A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)CrossRefGoogle Scholar
  78. 78.
    Y. Li, S. Li, Q. Song, H. Liu, M.Q.H. Meng, Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inf. 10(1), 331–339 (2014)CrossRefGoogle Scholar
  79. 79.
    S. Li, Y. Li, Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)CrossRefGoogle Scholar
  80. 80.
    Q. Huang, Z. You, S. Li, Z. Zhu, Using Chou’s amphiphilic pseudo-amino acid composition and extreme learning machine for prediction of protein-protein interactions, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2014), pp. 2952–2956Google Scholar
  81. 81.
    S. Li, Y. Li, Z. Wang, A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)zbMATHCrossRefGoogle Scholar
  82. 82.
    S. Li, B. Liu, Y. Li, Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. (24)(2), 301–309 (2013)Google Scholar
  83. 83.
    N.E. Manitara, C.N. Hadjicostis, Distributed stopping for average consensus in digraphs. IEEE Trans. Control Netw. Syst. (5)(3), 957–967 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    F. Iutzeler, P. Ciblat, J. Jakubowicz, Analysis of max-consensus algorithms in wireless channels. IEEE Trans. Signal Process. 60(11), 6103–6107 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    S. Zhang, C. Tepedelenlioğlu, M.K. Banavar, A. Spanias, Max-consensus using the soft maximum, in Proceedings of the Asilomar Conference on Signals, Systems and Computers (IEEE, Piscataway, 2013), pp. 433–437Google Scholar
  86. 86.
    J. Cortés, Distributed algorithms for reaching consensus on general functions. Automatica 44(3), 726–737 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. Regul. Pap. 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  88. 88.
    G. Shi, W. Xia, K.H. Johansson, Convergence of max-min consensus algorithms. Automatica 62, 11–17 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    S. Manfredi, D. Angeli, Necessary and sufficient conditions for consensus in nonlinear monotone networks with unilateral interactions. Automatica 77, 51–60 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    A. Abdessameud, A. Tayebi, On consensus algorithms design for double integrator dynamics. Automatica 49(1), 253–260 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    N. Huang, Z. Duan, G. Chen, Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63, 148–155 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Y. Zhang, S. Li, Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1701–1711 (2017)MathSciNetCrossRefGoogle Scholar
  93. 93.
    K.H. Movric, F.L. Lewis, Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans. Autom. Control 59(3), 769–774 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Y. Zhang, S. Li, Adaptive near-optimal consensus of high-order nonlinear multi-agent systems with heterogeneity. Automatica 85, 426–432 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    L. Ma, Z. Wang, H.K. Lam, Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations. IEEE Trans. Autom. Control 62(7), 3524–3531 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    C. Nowzari, J. Cortés, Distributed event-triggered coordination for average consensus on weight-balanced digraph. Automatica 68, 237–244 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    W. Ren, E. Atkins, Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10), 1002–1033 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    H. Su, X. Wang, G. Chen, Rendezvous of multiple mobile agents with preserved network connectivity. Syst. Control Lett. 59, 313–322 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Y. Zhang, S. Li, Distributed biased min-consensus with applications to shortest path planning. IEEE Trans. Autom. Control 62(10), 5429–5436 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    F.H. Clarke, Generalized gradients and application. Trans. Am. Math. Soc. 205, 247–262 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    H.K. Khalil, Nonlinear Systems (Prentice-Hall, Upper Saddle River, 2002)zbMATHGoogle Scholar
  102. 102.
    G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents. Int. J. Robust Nonlinear Control 17, 10–25 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yinyan Zhang
    • 1
  • Shuai Li
    • 2
  1. 1.College of Cyber SecurityJinan UniversityGuangzhouChina
  2. 2.School of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations