Advertisement

A Sexy Moth Model – The Molecular Basis of Sex Pheromone Biosynthesis in the Silkmoth Bombyx mori

  • J. Joe HullEmail author
  • Adrien Fónagy
Chapter
  • 22 Downloads
Part of the Entomology Monographs book series (ENTMON)

Abstract

The reproductive behaviors of many insects are coordinated by the synthesis and release of species-specific volatiles that communicate the location of potential mates. Given their biological importance, structural elucidation of these compounds (i.e., sex pheromones) and molecular determination of the underlying biosynthetic pathways have been the focus of numerous studies. Among the various model species that have been examined, the silkmoth (Bombyx mori) has had an outsized impact on the research field. Indeed, it was Adolf Butenandt’s pioneering publication in 1959 on chemical characterization of the silkmoth sex pheromone (E,Z)-10,12-hexadecadien-1-ol (i.e., bombykol) that ushered in a new era of chemical ecology. Since then, B. mori has been at the forefront of each new advancement in our understanding of the pre- and postadult eclosion processes that culminate in pheromone production – from demonstration of hormonal regulation by a neuropeptide to identification of the cognate receptors and characterization of the genes comprising the biosynthetic and regulatory pathways. In honor of the 60th anniversary of bombykol’s elucidation, we provide a perspective on the spectrum of studies that have made Butenandt’s “sexy” moth one of the principal models for sex pheromone biosynthesis.

Keywords

Bombyx mori Bombykol Sex pheromone biosynthesis 

Notes

Acknowledgments

We are grateful to Dr. József Fodor for critical reading of the text and insightful comments. We also thank Dr. Shogo Matsumoto (retired; RIKEN Advanced Science Institute) for his support of the Japan Society for the Promotion of Science which played a pivotal role in our respective careers. In addition, we thank the many members of the former Molecular Entomology Laboratory at the RIKEN Advanced Science Institute and the numerous colleagues and peers who have contributed to advancing our understanding of the cellular processes that govern biosynthesis of the pheromone that first piqued Butenstadt’s interest 60 years ago. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

References

  1. Allison JD, Cardé RT (2016) Pheromone communication in moths: evolution, behavior, and application. University of California PressGoogle Scholar
  2. Altstein M (2001) Insect neuropeptide antagonists. Biopolymers 60:460–473PubMedCrossRefGoogle Scholar
  3. Altstein M, Hariton A (2009) Rational design of insect control agents: the PK/PBAN family as a study case. In: Biorational control of arthropod pests. Springer, Dordrecht, pp 49–81CrossRefGoogle Scholar
  4. Altstein M, Gazit Y, Aziz OB et al (1996) Induction of cuticular melanization in Spodoptera littoralis larvae by PBAN/MRCH: development of a quantitative bioassay and structure function analysis. Arch Insect Biochem Physiol 31:355–370CrossRefGoogle Scholar
  5. Altstein M, Ben-Aziz O, Zeltser I et al (2007) Inhibition of PK/PBAN-mediated functions in insects: discovery of selective and non-selective inhibitors. Peptides 28:574–584PubMedCrossRefGoogle Scholar
  6. Ando T, Arima R, Uchiyama M et al (1988a) Pheromone biosynthesis activating neuropeptide hormone in heads of the silkworm moth. Agric Biol Chem 52:881–883Google Scholar
  7. Ando T, Hase T, Arima R, Uchiyama M (1988b) Biosynthetic pathway of bombykol, the sex pheromone of the female silkworm moth. Agric Biol Chem 52:473–478Google Scholar
  8. Ando T, Hase T, Funayoshi A et al (1988c) Sex pheromone biosynthesis from14C-Hexadecanoic acid in the silkworm moth. Agric Biol Chem 52:141–147Google Scholar
  9. Ando T, Inomata SI, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer-Verlag, Berlin Heidelberg, pp 51–96CrossRefGoogle Scholar
  10. Antony B, Fujii T, Moto K et al (2009) Pheromone-gland-specific fatty-acyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochem Mol Biol 39:90–95CrossRefGoogle Scholar
  11. Arima R, Takahara K, Kadoshima T et al (1991) Hormonal regulation of pheromone biosynthesis in the silkworm moth, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 26:137–147CrossRefGoogle Scholar
  12. Audsley N, Down RE (2015) G protein coupled receptors as targets for next generation pesticides. Insect Biochem Mol Biol 67:1–32CrossRefGoogle Scholar
  13. Bai H, Palli SR (2013) G protein-coupled receptors as target sites for insecticide discovery. In: Advanced technologies for managing insect pests. Springer, Dordrecht, pp 57–82CrossRefGoogle Scholar
  14. Barak LS, Ménard L, Ferguson SS et al (1995) The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the beta 2-adrenergic receptor. Biochemistry 34:15407–15414PubMedCrossRefGoogle Scholar
  15. Barbosa AD, Savage DB, Siniossoglou S (2015) Lipid droplet–organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35:91–97PubMedCrossRefGoogle Scholar
  16. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  17. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRefGoogle Scholar
  18. Bjostad LB, Wolf WA, Roelofs WL (1987) Pheromone biosynthesis in lepidopterans: desaturation and chain shortening. In: Pheromone biochemistry. Academic Press, Orlando, pp 77–120Google Scholar
  19. Bober R, Rafaeli A (2010) Gene-silencing reveals the functional significance of pheromone biosynthesis activating neuropeptide receptor (PBAN-R) in a male moth. Proc Natl Acad Sci 107:16858–16862PubMedCrossRefGoogle Scholar
  20. Bouley R, Sun T-X, Chenard M et al (2003) Functional role of the NPxxY motif in internalization of the type 2 vasopressin receptor in LLC-PK1 cells. Am J Physiol Cell Physiol 285:C750–C762PubMedCrossRefGoogle Scholar
  21. Butenandt A, Beckmann R, Stamm D, Hecker ET (1959) Uber den sexual-lockstoff des seidenspinners Bombyx mori -reindarstellung und konstitution. Zeitschrift Fur Naturforschung Part B-Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete 14:283–284Google Scholar
  22. Byers DM, Gong H (2007) Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem Cell Biol 85:649–662PubMedCrossRefGoogle Scholar
  23. Calebiro D, Godbole A (2018) Internalization of G-protein-coupled receptors: implication in receptor function, physiology and diseases. Best Pract Res Clin Endocrinol Metab 32:83–91PubMedCrossRefGoogle Scholar
  24. Cha WH, Jung JK, Lee D-W (2018) Identification of G protein-coupled receptors in the pheromone gland of Maruca vitrata by transcriptomic analysis. J Asia-Pacific Entomol 21:1203–1210CrossRefGoogle Scholar
  25. Chabre M, le Maire M (2005) Monomeric G-protein-coupled receptor as a functional unit. Biochemistry 44:9395–9403PubMedCrossRefGoogle Scholar
  26. Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19PubMedCrossRefGoogle Scholar
  27. Chang J-C, Ramasamy S (2014) Identification and expression analysis of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) in the legume pod borer, Maruca vitrata Fabricius. PLoS One 9:e84916–e84911PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cheng Y, Luo L, Jiang X et al (2010) Expression of pheromone biosynthesis activating neuropeptide and its receptor (PBANR) mRNA in adult female Spodoptera exigua (Lepidoptera: Noctuidae). Arch Insect Biochem Physiol 75:13–27PubMedCrossRefGoogle Scholar
  29. Choi M-Y, Jurenka RA (2004) PBAN stimulation of pheromone biosynthesis by inducing calcium influx in pheromone glands of Helicoverpa zea. J Insect Physiol 50:555–560PubMedCrossRefGoogle Scholar
  30. Choi M-Y, Jurenka RA (2006) Role of extracellular Ca2+ and calcium channel activated by a G protein-coupled receptor regulating pheromone production in Helicoverpa zea (Lepidoptera: Noctuidae). Ann Entomol Soc Am 99:905–909Google Scholar
  31. Choi M-Y, Vander Meer RK (2012) Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One 7:e50400PubMedPubMedCentralCrossRefGoogle Scholar
  32. Choi M-Y, Fuerst E-J, Rafaeli A, Jurenka RA (2003) Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci U S A 100:9721–9726PubMedPubMedCentralCrossRefGoogle Scholar
  33. Choi M-Y, Fuerst E-J, Rafaeli A, Jurenka R (2007) Role of extracellular domains in PBAN/pyrokinin GPCRs from insects using chimera receptors. Insect Biochem Mol Biol 37:296–306PubMedCrossRefGoogle Scholar
  34. Chow KBS, Sun J, Chu KM et al (2012) The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression. Mol Cell Endocrinol 348:247–254PubMedCrossRefGoogle Scholar
  35. Collawn JF, Stangel M, Kuhn LA et al (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63:1061–1072PubMedCrossRefGoogle Scholar
  36. Cong X, Topin J, Golebiowski J (2017) Class A GPCRs: structure, function, modeling and structure-based ligand design. Curr Pharm Des 23:4390–4409PubMedCrossRefGoogle Scholar
  37. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure-based drug design for G protein-coupled receptors. J Med Chem 54:4283–4311PubMedPubMedCentralCrossRefGoogle Scholar
  38. D'Andrea S (2016) Lipid droplet mobilization: the different ways to loosen the purse strings. Biochimie 120:17–27PubMedCrossRefGoogle Scholar
  39. Davis NT, Homberg U, Teal PEA et al (1996) Neuroanatomy and immunocytochemistry of the median neuroendocrine cells of the subesophageal ganglion of the tobacco hawkmoth, Manduca sexta: immunoreactivities to PBAN and other neuropeptides. Microsc Res Tech 35:201–229PubMedCrossRefGoogle Scholar
  40. Derler I, Jardín I, Romanin C (2016) Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol 310:C643–C662PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ding B-J, Löfstedt C (2015) Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics:1–21Google Scholar
  42. Donaldson LF, Beazley-Long N (2016) Alternative RNA splicing: contribution to pain and potential therapeutic strategy. Drug Discov Today 21:1787–1798PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dong C, Filipeanu CM, Duvernay MT, Wu G (2007) Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 1768:853–870PubMedCrossRefGoogle Scholar
  44. Du M, Yin X, Zhang S et al (2012a) Identification of lipases involved in PBAN stimulated pheromone production in Bombyx mori using the DGE and RNAi approaches. PLoS One 7:e31045PubMedPubMedCentralCrossRefGoogle Scholar
  45. Du M, Zhang S, Zhu B et al (2012b) Identification of a diacylglycerol acyltransferase 2 gene involved in pheromone biosynthesis activating neuropeptide stimulated pheromone production in Bombyx mori. J Insect Physiol 58:699–703PubMedCrossRefGoogle Scholar
  46. Du M, Liu X, Liu X et al (2015) Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori. Sci Rep 5:8110PubMedPubMedCentralCrossRefGoogle Scholar
  47. Du M, Liu X, Ma N et al (2017a) Calcineurin-mediated dephosphorylation of acetyl-coA carboxylase is required for pheromone biosynthesis activating neuropeptide (PBAN)-induced sex pheromone biosynthesis in Helicoverpa armigera. Mol Cell Proteomics 16:2138–2152PubMedPubMedCentralCrossRefGoogle Scholar
  48. Du M, Zhao W, Jurenka R et al (2017b) Transcriptome analysis of Helicoverpa armigera male hairpencils: alcohol biosynthesis and requirement for mating success. Insect Biochem Mol Biol 87:154–164PubMedCrossRefGoogle Scholar
  49. Duc NM, Kim HR, Chung KY (2015) Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol 763:214–222PubMedCrossRefGoogle Scholar
  50. Duvernay MT, Filipeanu CM, Wu G (2005) The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell Signal 17:1457–1465PubMedCrossRefGoogle Scholar
  51. El-Sayed AM (2018) The Pherobase: database of Pheromones and Semiochemicals www.pherobase.com
  52. Fang N, Teal PE, Tumlinson JH (1996) Effects of decapitation and PBAN injection on amounts of triacylglycerols in the sex pheromone gland of Manduca sexta (L.). Arch Insect Biochem Physiol 32:249–260CrossRefGoogle Scholar
  53. Ferguson S (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24PubMedGoogle Scholar
  54. Ferré S, Casadó V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fodor J, Köblös G, Kákai et al (2017) Molecular cloning, mRNA expression and biological activity of the pheromone biosynthesis activating neuropeptide (PBAN) from the European corn borer, Ostrinia nubilalis. Insect Mol Biol 31:355–317Google Scholar
  56. Fodor J, Hull JJ, Köblös G et al (2018) Identification and functional characterization of the pheromone biosynthesis activating neuropeptide receptor isoforms from Mamestra brassicae. Gen Comp Endocrinol 258:60–69PubMedCrossRefGoogle Scholar
  57. Fónagy A, Matsumoto S, Schoofs L et al (1992a) In vivo and in vitro pheromonotropic activity of two locustatachykinin peptides in Bombyx mori. Biosci Biotechnol Biochem 56:1692–1693PubMedCrossRefGoogle Scholar
  58. Fónagy A, Matsumoto S, Uchiumi K et al (1992b) Action of pheromone biosynthesis activating neuropeptide on pheromone glands of Bombyx mori and Spodoptera litura. J Pest Sci 17:47–54CrossRefGoogle Scholar
  59. Fónagy A, Matsumoto S, Uchiumi K, Mitsui T (1992c) Role of calcium ion and cyclic nucleotides in pheromone production in Bombyx mori. J Pest Sci 17:115–121CrossRefGoogle Scholar
  60. Fónagy A, Schoofs L, Matsumoto S et al (1992d) Functional cross-reactivities of some locustamyotropins and Bombyx pheromone biosynthesis activating neuropeptide. J Insect Physiol 38:651–657CrossRefGoogle Scholar
  61. Fónagy A, Yokoyama N, Ozawa R et al (1999) Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp Biochem Physiol B 124:51–60PubMedCrossRefGoogle Scholar
  62. Fónagy A, Yokoyama N, Okano K et al (2000) Pheromone-producing cells in the silkmoth, Bombyx mori: identification and their morphological changes in response to pheromonotropic stimuli. J Insect Physiol 46:735–744PubMedCrossRefGoogle Scholar
  63. Fónagy A, Yokoyama N, Matsumoto S (2001) Physiological status and change of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori (Lepidoptera, Bombycidae). Arthropod Struct Dev 30:113–123PubMedCrossRefGoogle Scholar
  64. Fónagy A, Ohnishi A, Esumi Y et al (2005) Further studies of lipid droplets in the bombykol-producing pheromone gland of Bombyx mori. Ann N Y Acad Sci 1040:310–314PubMedCrossRefGoogle Scholar
  65. Foster SP (2001) Fatty acyl pheromone analogue-containing lipids and their roles in sex pheromone biosynthesis in the lightbrown apple moth, Epipyhas postvittana (Walker). J Insect Physiol 47:433–443PubMedCrossRefGoogle Scholar
  66. Foster SP (2005) Lipid analysis of the sex pheromone gland of the moth Heliothis virescens. Arch Insect Biochem Physiol 59:80–90PubMedCrossRefGoogle Scholar
  67. Fotiadis D, Jastrzebska B, Philippsen A et al (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16:252–259PubMedCrossRefGoogle Scholar
  68. Fujii T, Sakurai T, Ito K et al (2018) Lipid droplets in the pheromone gland of wild silkmoth Bombyx mandarina. J Insect Biotechnol Sericol 87:2029–2034Google Scholar
  69. Gao Q, Goodman JM (2015) The lipid droplet—a well-connected organelle. Front Cell Dev Biol 3:49PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gossett RE, Frolov AA, Roths JB et al (1996) Acyl-CoA binding proteins: multiplicity and function. Lipids 31:895–918PubMedCrossRefGoogle Scholar
  71. Gripentrog JM (2000) A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis. Biochem J 352:399–407PubMedPubMedCentralCrossRefGoogle Scholar
  72. Groot AT (2014) Circadian rhythms of sexual activities in moths: a review. Front Ecol Evol 2:43CrossRefGoogle Scholar
  73. Groot AT, Dekker T, Heckel DG (2015) The genetic basis of pheromone evolution in moths. Annu Rev Entomol 61:99–117PubMedCrossRefGoogle Scholar
  74. Guo Y, Cordes KR, Farese RV, Walther TC (2009) Lipid droplets at a glance. J Cell Sci 122:749–752PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hagino A, Kitagawa N, Imai K et al (2010) Immunoreactive intensity of FXPRL amide neuropeptides in response to environmental conditions in the silkworm, Bombyx mori. Cell Tissue Res 342:459–469PubMedCrossRefGoogle Scholar
  76. Hagström AK, Liénard MA, Groot AT et al (2012) Semi-selective fatty acyl reductases from four heliothine moths influence the specific pheromone composition. PLoS One 7:e37230PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol Lond 578:9–24PubMedCrossRefGoogle Scholar
  78. Hariton A, Ben-Aziz O, Davidovitch M, Altstein M (2010) Bioavailability of backbone cyclic PK/PBAN neuropeptide antagonists--inhibition of sex pheromone biosynthesis elicited by the natural mechanism in Heliothis peltigera females. FEBS J 277:1035–1044PubMedCrossRefGoogle Scholar
  79. Hasegawa K, Shimizu I (1990) GABAergic control of the release of diapause hormone from the suboesophageal ganglion of the silkworm, Bombyx mori. J Insect Physiol 36:909–915CrossRefGoogle Scholar
  80. Hayashi T, Ito U (1933) Histological observations of the alluring gland of the female silkmoth. J Seric Sci 4:308–314Google Scholar
  81. He R, Browning DD, Ye RD (2001) Differential roles of the NPXXY motif in formyl peptide receptor signaling. J Immunol 166:4099–4105PubMedCrossRefGoogle Scholar
  82. Holman GM, Cook BJ, Nachman RJ (1986) Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae. Comp Biochem Physiol Part C: Comp Pharmacol 85:219–224CrossRefGoogle Scholar
  83. Holst B, Nygaard R, Valentin-Hansen L et al (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973–3985PubMedCrossRefGoogle Scholar
  84. Homma T, Watanabe K, Tsurumaru S et al (2006) G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Commun 344:386–393PubMedCrossRefGoogle Scholar
  85. Hong B, Zhang Z-F, Tang S-M et al (2006) Protein–DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Biochim Biophys Acta Gene Struct Expr 1759:177–185CrossRefGoogle Scholar
  86. Hull JJ, Ohnishi A, Moto K et al (2004) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J Biol Chem 279:51500–51507PubMedCrossRefGoogle Scholar
  87. Hull JJ, Ohnishi A, Matsumoto S (2005) Regulatory mechanisms underlying pheromone biosynthesis activating neuropeptide (PBAN)-induced internalization of the Bombyx mori PBAN receptor. Biochem Biophys Res Commun 334:69–78PubMedCrossRefGoogle Scholar
  88. Hull JJ, Kajigaya R, Imai K, Matsumoto S (2007a) The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. J Insect Physiol 53:782–793PubMedCrossRefGoogle Scholar
  89. Hull JJ, Kajigaya R, Imai K, Matsumoto S (2007b) Sex pheromone production in the silkworm, Bombyx mori, is mediated by store-operated Ca2+ channels. Biosci Biotechnol Biochem 71:1993–2001PubMedCrossRefGoogle Scholar
  90. Hull JJ, Lee JM, Kajigaya R, Matsumoto S (2009) Bombyx mori homologs of STIM1 and Orai1 are essential components of the signal transduction cascade that regulates sex pheromone production. J Biol Chem 284:31200–31213PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hull JJ, Lee JM, Matsumoto S (2010) Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade. Insect Mol Biol 19:553–566PubMedGoogle Scholar
  92. Hull JJ, Lee JM, Matsumoto S (2011) Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori pheromone biosynthesis activating neuropeptide receptor crucial for ligand-induced internalization. Insect Mol Biol 20:801–811PubMedCrossRefGoogle Scholar
  93. Hulme EC (2013) GPCR activation: a mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34:67–84PubMedCrossRefGoogle Scholar
  94. Hussain MM (2014) Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 25:200–206PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ichikawa T (1998) Activity patterns of neurosecretory cells releasing pheromonotropic neuropeptides in the moth Bombyx mori. Proc Natl Acad Sci U S A 95:4055–4060PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ichikawa T, Kamimoto S (2003) Firing activities of neurosecretory cells producing diapause hormone and its related peptides in the female silkmoth, Bombyx mori. II. Mandibular and maxillary cells. Zool Sci 20:979–983PubMedCrossRefGoogle Scholar
  97. Ichikawa T, Suenobu A (2003) Firing activity of “diapause hormone” producing cells in the male silkmoth, Bombyx mori. Zool Sci 20:957–962PubMedCrossRefGoogle Scholar
  98. Ichikawa T, Hasegawa K, Shimizu I et al (1995) Structure of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. Zool Sci 12:703–712CrossRefGoogle Scholar
  99. Ichikawa T, Shiota T, Shimizu I, Kataoka H (1996) Functional differentiation of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide of the moth, Bombyx mori. Zool Sci 13:21–25CrossRefGoogle Scholar
  100. Ichikawa T, Aoki S, Shimizu I (1997) Neuroendocrine control of diapause hormone secretion in the silkworm, Bombyx mori. J Insect Physiol 43:1101–1109PubMedCrossRefGoogle Scholar
  101. Imai K, Konno T, Nakazawa Y et al (1991) Isolation and structure of diapause hormone of the silkworm, Bombyx mori. Proc Jpn Acad Ser B Phys Biol Sci 67:98–101CrossRefGoogle Scholar
  102. Iwanaga M, Dohmae N, Francke A et al (1998) Isolation and characterization of calmodulin in the pheromone gland of the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 120:761–767PubMedCrossRefGoogle Scholar
  103. Jiang L, Zhang F, Hou Y et al (2018) Isolation and functional characterization of the pheromone biosynthesis activating neuropeptide receptor of Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 117:42–50PubMedCrossRefGoogle Scholar
  104. Jing T-Z, Wang Z-Y, Qi F-H, Liu K-Y (2007) Molecular characterization of diapause hormone and pheromone biosynthesis activating neuropeptide from the black-back prominent moth, Clostera anastomosis (L.) (Lepidoptera, Notodontidae). Insect Biochem Mol Biol 37:1262–1271PubMedCrossRefGoogle Scholar
  105. Jurenka R (1996) Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch Insect Biochem Physiol 33:245–258CrossRefGoogle Scholar
  106. Jurenka R (2015) The PRXamide neuropeptide signalling system: conserved in animals. In: Jurenka R (ed) Advances in insect physiology. Academic Press, Oxford, pp 123–170Google Scholar
  107. Jurenka R (2017) Regulation of pheromone biosynthesis in moths. Curr Opin Insect Sci 24:29–35PubMedCrossRefGoogle Scholar
  108. Jurenka R, Nusawardani T (2011) The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains. Insect Mol Biol 20:323–334PubMedCrossRefGoogle Scholar
  109. Jurenka RA, Jacquin E, Roelofs WL (1991a) Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc Natl Acad Sci U S A 88:8621–8625PubMedPubMedCentralCrossRefGoogle Scholar
  110. Jurenka RA, Jacquin E, Roelofs WL (1991b) Control of the pheromone biosynthetic pathway in Helicoverpa zea by the pheromone biosynthesis activating neuropeptide. Arch Insect Biochem Physiol 17:81–91CrossRefGoogle Scholar
  111. Jurenka RA, Fabriás G, DeVoe L, Roelofs WL (1994) Action of PBAN and related peptides on pheromone biosynthesis in isolated pheromone glands of the redbanded leafroller moth, Argyrotaenia velutinana. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 108:153–160PubMedCrossRefGoogle Scholar
  112. Kawai T, Hull JJ, Matsumoto S et al (2010) Studies on the structure-activity relationship of pheromone biosynthesis-activating neuropeptide (PBAN). In: Okamoto K (ed) Peptide science 2009: proceedings of the 46th Japanese peptide symposium. The Japanese Peptide Society Press, Osaka, pp 231–234Google Scholar
  113. Kawai T, Nagata K, Okada K et al (2011) Structure-activity relationship studies of the pheromone biosynthesis-activating neuropeptide of the silkworm, Bombyx mori. In: Fujii N, Kiso Y (eds) Peptide SCIENCE 2010: proceedings of the fifth international peptide symposium. The Japanese Peptide Society Press, Osaka, p 126Google Scholar
  114. Kawai T, Lee JM, Nagata K et al (2012) The arginine residue within the C-terminal active core of Bombyx mori pheromone biosynthesis-activating neuropeptide is essential for receptor binding and activation. Front Endocrinol 3:42CrossRefGoogle Scholar
  115. Kawai T, Katayama Y, Guo L et al (2014) Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 289:19150–19163PubMedCrossRefGoogle Scholar
  116. Kawano T, Kataoka H, Nagasawa H, Isogai A (1992) cDNA cloning and sequence determination of the pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Biochem Biophys Res Commun 189:221–226PubMedCrossRefGoogle Scholar
  117. Kim Y-J, Nachman R, Aimanova K et al (2008) The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 29:268–275PubMedCrossRefGoogle Scholar
  118. Kingan TG, Blackburn MB, Raina AK (1992) The distribution of pheromone-biosynthesis-activating neuropeptide (PBAN) immunoreactivity in the central nervous system of the corn earworm moth, Helicoverpa zea. Cell Tissue Res 270:229–240CrossRefGoogle Scholar
  119. Kitamura A, Nagasawa H, Kataoka H et al (1989) Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem Biophys Res Commun 163:520–526PubMedCrossRefGoogle Scholar
  120. Kitamura A, Nagasawa H, Kataoka H et al (1990) Amino acid sequence of pheromone biosynthesis activating neuropeptide-II (PBAN-II) of the silkmoth, Bombyx mori. Agric Biol Chem 54:2495–2497PubMedGoogle Scholar
  121. Kleinau G, Jaeschke H, Worth CL et al (2010) Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One 5:e9745PubMedPubMedCentralCrossRefGoogle Scholar
  122. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80PubMedCrossRefGoogle Scholar
  123. Kuniyoshi H, Kitamura A, Nagasawa H et al (1991a) Structure-activity relationship of pheromone biosynthesis activating neuropeptide (PBAN) from the silkmoth, Bombyx mori. Pept Chem 1990:251–254Google Scholar
  124. Kuniyoshi H, Nagasawa H, Ando T, Suzuki A (1991b) Structure-activity relationship and metabolism of pheromone biosynthesis activating neuropeptide (PBAN) from the silkmoth Bombyx mori. Pept Chem:221–226Google Scholar
  125. Kuniyoshi H, Nagasawa H, Ando T et al (1992a) Cross-activity between pheromone biosynthesis activating neuropeptide (PBAN) and myotropic pyrokinin insect peptides. Biosci Biotechnol Biochem 56:167–168PubMedCrossRefGoogle Scholar
  126. Kuniyoshi H, Nagasawa H, Ando T, Suzuki A (1992b) N-terminal modified analogs of C-terminal fragments of PBAN with pheromonotropic activity. Insect Biochem Mol Biol 22:399–403CrossRefGoogle Scholar
  127. Lassance J-M, Liénard MA, Antony B et al (2013) Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci U S A 110:3967–3972PubMedPubMedCentralCrossRefGoogle Scholar
  128. Lee JM, Hull JJ, Kawai T et al (2012a) Re-evaluation of the PBAN receptor molecule: characterization of PBANR variants expressed in the pheromone glands of moths. Front Endocrinol 3:6CrossRefGoogle Scholar
  129. Lee JM, Hull JJ, Kawai T et al (2012b) Establishment of Sf9 transformants constitutively expressing PBAN receptor variants: application to functional evaluation. Front Endocrinol 3:56Google Scholar
  130. Liénard MA, Hagström AK, Lassance J-M, Löfstedt C (2010) Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. Proc Natl Acad Sci U S A 107:10955–10960PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ma PW, Ramaswamy SB (2003) Biology and ultrastructure of sex pheromone-producing tissue. In: Insect pheromone biochemistry and molecular biology. Academic Press, Boston, pp 19–51CrossRefGoogle Scholar
  132. Ma PWK, Roelofs WL (1995a) Sites of synthesis and release of PBAN-like factor in the female European corn borer, Ostrinia nubilalis. J Insect Physiol 41:339–350CrossRefGoogle Scholar
  133. Ma PWK, Roelofs WL (1995b) Calcium involvement in the stimulation of sex pheromone production by PBAN in the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Insect Biochem Mol Biol 25:467–473CrossRefGoogle Scholar
  134. Maggio R, Fasciani I, Rossi M et al (2016) Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 44:589–594PubMedCrossRefGoogle Scholar
  135. Markovic D, Challiss RAJ (2009) Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 66:3337–3352PubMedCrossRefGoogle Scholar
  136. Matoušková P, Pichová I, Svatos A (2007) Functional characterization of a desaturase from the tobacco hornworm moth (Manduca sexta) with bifunctional Z11-and 10, 12-desaturase activity. Insect Biochem Mol Biol 37:601–610PubMedCrossRefGoogle Scholar
  137. Matsumoto S, Isogai A, Suzuki A (1986) Isolation and amino terminal sequence of melanization and reddish coloration hormone (MRCH) from the silkworm, Bombyx mori. Insect Biochem 16:775–779CrossRefGoogle Scholar
  138. Matsumoto S, Kitamura A, Nagasawa H et al (1990) Functional diversity of a neurohormone produced by the suboesophageal ganglion: molecular identity of melanization and reddish colouration hormone and pheromone biosynthesis activating neuropeptide. J Insect Physiol 36:427–432CrossRefGoogle Scholar
  139. Matsumoto S, Fónagy A, Kurihara M, Uchiumi K (1992a) Isolation and primary structure of a novel pheromonotropic neuropeptide structurally related to leucopyrokinin from the armyworm larvae, Pseudaletia separata. Biochem Biophys Res Commun 182:534–539PubMedCrossRefGoogle Scholar
  140. Matsumoto S, Yamashita O, Fónagy A (1992b) Functional diversity of a pheromonotropic neuropeptide: induction of cuticular melanization and embryonic diapause in lepidopteran insects by Pseudaletia pheromonotropin. J Insect Physiol 38:847–851CrossRefGoogle Scholar
  141. Matsumoto S, Ozawa R, Nagamine T et al (1995a) Intracellular transduction in the regulation of pheromone biosynthesis of the silkworm, Bombyx mori: suggested involvement of calmodulin and phosphoprotein phosphatase. Biosci Biotechnol Biochem 59:560–562PubMedCrossRefGoogle Scholar
  142. Matsumoto S, Ozawa R, Uchiumi K et al (1995b) Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem Mol Biol 25:1055–1059PubMedCrossRefGoogle Scholar
  143. Matsumoto S, Yoshiga T, Yokoyama N et al (2001) Characterization of acyl-CoA-binding protein (ACBP) in the pheromone gland of the silkworm, Bombyx mori. Insect Biochem Mol Biol 31:603–609PubMedCrossRefGoogle Scholar
  144. Matsumoto S, Fónagy A, Yamamoto M (2002) Chemical characterization of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori. Insect Biochem Mol Biol 32:1447–1455PubMedCrossRefGoogle Scholar
  145. Matsutani K, Sonobe H (1987) Control of diapause-factor secretion from the suboesophageal ganglion in the silkworm, Bombyx mori: the roles of the protocerebrum and tritocerebrum. J Insect Physiol 33:279–285CrossRefGoogle Scholar
  146. McDowell DG, Burns NA, Parkes HC (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res 26:3340–3347PubMedPubMedCentralCrossRefGoogle Scholar
  147. Mobarec JC, Sanchez R, Filizola M (2009) Modern homology modeling of G-protein coupled receptors: which structural template to use? J Med Chem 52:5207–5216PubMedPubMedCentralCrossRefGoogle Scholar
  148. Morita A, Niimi T, Yamashita O (2003) Physiological differentiation of DH-PBAN-producing neurosecretory cells in the silkworm embryo. J Insect Physiol 49:1093–1102PubMedCrossRefGoogle Scholar
  149. Moto K-I, Matsumoto S (2012) Construction of an in vivo system for functional analysis of the genes involved in sex pheromone production in the silkmoth, Bombyx mori. Front Endocrinol 3:30CrossRefGoogle Scholar
  150. Moto K, Yoshiga T, Yamamoto M et al (2003) Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci U S A 100:9156–9161PubMedPubMedCentralCrossRefGoogle Scholar
  151. Moto K, Suzuki MG, Hull JJ et al (2004) Involvement of a bifunctional fatty-acyl desaturase in the biosynthesis of the silkmoth, Bombyx mori, sex pheromone. Proc Natl Acad Sci U S A 101:8631–8636PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472PubMedPubMedCentralCrossRefGoogle Scholar
  153. Nachman RJ (2009) Agonists/antagonists of the insect kinin and pyrokinin/PBAN neuropeptide classes as tools for rational pest control. In: Biorational control of arthropod pests: application and resistance management. Springer, Dordrecht, pp 21–48CrossRefGoogle Scholar
  154. Nachman RJ (2014) Peptidomics applied: a new strategy for development of selective antagonists/agonists of insect pyrokinin (FXPRLamide) family using a novel conformational-mimetic motif. EuPA Open Proteom 3:138–142CrossRefGoogle Scholar
  155. Nachman RJ, Kuniyoshi H, Roberts VA et al (1993) Active conformation of the pyrokinin/PBAN neuropeptide family for pheromone biosynthesis in the silkworm. Biochem Biophys Res Commun 193:661–666PubMedCrossRefGoogle Scholar
  156. Nagasawa H, Kitamura A, Inoue T et al (1988) Isolation of pheromone biosynthesis activating neuropeptide of the silkworm, Bombyx mori. Agric Biol Chem 52:2985–2987Google Scholar
  157. Nagasawa H, Kuniyoshi H, Arima R et al (1994) Structure and activity of Bombyx PBAN. Arch Insect Biochem Physiol 25:261–270PubMedCrossRefGoogle Scholar
  158. Noguchi H, Hayakawa Y (2001) Dopamine is a key factor for the induction of egg diapause of the silkworm, Bombyx mori. Eur J Biochem 268:774–780PubMedCrossRefGoogle Scholar
  159. Nusawardani T, Kroemer JA, Choi M-Y, Jurenka RA (2013) Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. Insect Mol Biol 22:331–340PubMedCrossRefGoogle Scholar
  160. Nwokonko RM, Cai X, Loktionova NA et al (2017) The STIM-Orai pathway: conformational coupling between STIM and Orai in the activation of store-operated Ca2+ entry. In: Store-operated Ca2+ entry (SOCE) pathways. Springer, Cham, pp 83–98CrossRefGoogle Scholar
  161. Ohguchi Y, Tatsuki S, Usui K, Arai K (1985) Hormone-like substance present in the cephalic organs of the female moth, Chilo suppressalis (Walker)(Lepidoptera:Pyralidae) and controlling sex pheromone production. Jpn J Appl Entomol Zool 29:265–269CrossRefGoogle Scholar
  162. Ohnishi A, Koshino H, Takahashi S et al (2005) Isolation and characterization of a humoral factor that stimulates transcription of the acyl-CoA-binding protein in the pheromone gland of the silkmoth, Bombyx mori. J Biol Chem 280:4111–4116PubMedCrossRefGoogle Scholar
  163. Ohnishi A, Hull JJ, Matsumoto S (2006) Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci U S A 103:4398–4403PubMedPubMedCentralCrossRefGoogle Scholar
  164. Ohnishi A, Hashimoto K, Imai K, Matsumoto S (2009) Functional characterization of the Bombyx mori fatty acid transport protein (BmFATP) within the silkmoth pheromone gland. J Biol Chem 284:5128–5136PubMedCrossRefGoogle Scholar
  165. Ohnishi A, Hull JJ, Kaji M et al (2011a) Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J Biol Chem 286:24101–24112PubMedPubMedCentralCrossRefGoogle Scholar
  166. Ohnishi A, Kaji M, Hashimoto K, Matsumoto S (2011b) Screening for the genes involved in bombykol biosynthesis: identification and functional characterization of Bombyx mori acyl carrier protein. Front Endocrinol 2:92CrossRefGoogle Scholar
  167. Okada A, Kawai T, Sugisaka A, Ohtsuka J, Hull JJ, Moto K, Matsumoto S, Nagasawa H, Nagata K, Tanokura M (2009) Structural analysis of the active and inactive fragments of pheromone biosynthesis-activating neuropeptide (PBAN) from the silkmoth Bombyx mori. In: Peptide science: proceedings of the Japanese peptide symposium, pp 535–538Google Scholar
  168. Ozawa R, Matsumoto S (1996) Intracellular signal transduction of PBAN action in the silkworm, Bombyx mori: involvement of acyl CoA reductase. Insect Biochem Mol Biol 26:259–265PubMedCrossRefGoogle Scholar
  169. Ozawa AR, Ando T, Nagasawa H et al (1993) Reduction of the acyl group: the critical step in bombykol biosynthesis that is regulated in vitro by the neuropeptide hormone in the pheromone gland of Bombyx mori. Biosci Biotechnol Biochem 57:2144–2147CrossRefGoogle Scholar
  170. Ozawa R, Matsumoto S, Kim GH et al (1995) Intracellular signal transduction of PBAN action in lepidopteran insects: inhibition of sex pheromone production by compactin, an HMG CoA reductase inhibitor. Regul Pept 57:319–327PubMedCrossRefGoogle Scholar
  171. Paing MM, Temple BRS, Trejo J (2004) A tyrosine-based sorting signal regulates intracellular trafficking of protease-activated receptor-1: multiple regulatory mechanisms for agonist-induced G protein-coupled receptor internalization. J Biol Chem 279:21938–21947PubMedCrossRefGoogle Scholar
  172. Pandey KN (2009) Functional roles of short sequence motifs in the endocytosis of membrane receptors. Front Biosci 14:5339–5360CrossRefGoogle Scholar
  173. Parekh AB (2006) On the activation mechanism of store-operated calcium channels. Pflugers Arch 453:303–311PubMedCrossRefGoogle Scholar
  174. Park Y, Kim Y-J, Adams ME (2002) Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci U S A 99:11423–11428PubMedPubMedCentralCrossRefGoogle Scholar
  175. Patel RT, Soulages JL, Hariharasundaram B, Arrese EL (2005) Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem 280:22624–22631PubMedCrossRefGoogle Scholar
  176. Patterson R, Vanrossum D, Nikolaidis N et al (2005) Phospholipase C-γ: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 30:688–697PubMedCrossRefGoogle Scholar
  177. Percy-Cunningham JE, MacDonald JA (1987) Biology and ultrastructure of sex pheromone-producing glands. In: Blomquist GJ, Prestwich GD (eds) Pheromone biochemistry. Academic Press, Orlando, pp 27–75Google Scholar
  178. Pol A, Gross SP, Parton RG (2014) Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204:635–646PubMedPubMedCentralCrossRefGoogle Scholar
  179. Quentien MH, Manfroid I, Moncet D et al (2002) Pitx factors are involved in basal and hormone-regulated activity of the human prolactin promoter. J Biol Chem (46):44408–44416PubMedCrossRefGoogle Scholar
  180. Rafaeli A (1994) Pheromonotropic stimulation of moth pheromone gland cultures in vitro. Arch Insect Biochem Physiol 25:287–299CrossRefGoogle Scholar
  181. Rafaeli A, Gileadi C (1996) Down regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem Mol Biol 26:797–807CrossRefGoogle Scholar
  182. Rafaeli A, Gileadi C (1997) Neuroendocrine control of pheromone production in moths. Invertebr Neurosci 3:223–229CrossRefGoogle Scholar
  183. Rafaeli A, Soroker V (1989) Cyclic AMP mediation of the hormonal stimulation of 14C-acetate incorporation by Heliothis armigera pheromone glands in vitro. Mol Cell Endocrinol 65:43–48PubMedCrossRefGoogle Scholar
  184. Rafaeli A, Soroker V, Kamensky B, Raina AK (1990) Action of pheromone biosynthesis activating neuropeptide on in vitro pheromone glands of Heliothis armigera females. J Insect Physiol 36:641–646CrossRefGoogle Scholar
  185. Rafaeli A, Zakharova T, Lapsker Z, Jurenka RA (2003) The identification of an age- and female-specific putative PBAN membrane-receptor protein in pheromone glands of Helicoverpa armigera: possible up-regulation by juvenile hormone. Insect Biochem Mol Biol 33:371–380PubMedCrossRefGoogle Scholar
  186. Rafaeli A, Bober R, Becker L et al (2007) Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol Biol 16:287–293PubMedCrossRefGoogle Scholar
  187. Raina AK, Klun JA (1984) Brain factor control of sex pheromone production in the female corn earworm moth. Science 225:531–533PubMedCrossRefGoogle Scholar
  188. Raina AK, Jaffe H, Klun JA et al (1987) Characteristics of a neurohormone that controls sex pheromone production in Heliothis zea. J Insect Physiol 33:809–814CrossRefGoogle Scholar
  189. Raina A, Jaffe H, Kempe T et al (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244:796–798PubMedCrossRefGoogle Scholar
  190. Raina AK, Kingan TG, Kochansky JP (2003) A pheromonotropic peptide of Helicoverpa zea, with melanizing activity, interaction with PBAN, and distribution of immunoreactivity. Arch Insect Biochem Physiol 53:147–157PubMedCrossRefGoogle Scholar
  191. Riddiford LM, Williams CM (1971) Role of the corpora cardiaca in the behavior of saturniid moths. I. Release of sex pheromone. Biol Bull 140:1–7PubMedCrossRefGoogle Scholar
  192. Roelofs WL, Liu W, Hao G et al (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci U S A 99:13621–13626PubMedPubMedCentralCrossRefGoogle Scholar
  193. Sabio M, Jones K, Topiol S (2008) Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: identification of active compounds. Bioorg Med Chem Lett 18:5391–5395PubMedCrossRefGoogle Scholar
  194. Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5:125PubMedPubMedCentralCrossRefGoogle Scholar
  195. Sato Y, Oguchi M, Menjo N et al (1993) Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci U S A 90:3251–3255PubMedPubMedCentralCrossRefGoogle Scholar
  196. Sato Y, Ikeda M, Yamashita O (1994) Neurosecretory cells expressing the gene for common precursor for diapause hormone and pheromone biosynthesis-activating neuropeptide in the suboesophageal ganglion of the silkworm, Bombyx mori. Gen Comp Endocrinol 96:27–36PubMedCrossRefGoogle Scholar
  197. Sato Y, Shiomi K, Saito H et al (1998) Phe-X-Pro-Arg-Leu-NH2 peptide producing cells in the central nervous system of the silkworm, Bombyx mori. J Insect Physiol 44:333–342PubMedCrossRefGoogle Scholar
  198. Scherkenbeck J, Zdobinsky T (2009) Insect neuropeptides: structures, chemical modifications and potential for insect control. Bioorganic Med Chem 17:4071–4084CrossRefGoogle Scholar
  199. Schoofs L, Vanden Broeck J, De Loof A (1993) The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. Insect Biochem Mol Biol 23:859–881PubMedCrossRefGoogle Scholar
  200. Schoofs L, De Loof A, Van Hiel MB (2017) Neuropeptides as regulators of behavior in insects. Annu Rev Entomol 62:35–52PubMedCrossRefGoogle Scholar
  201. Seck T, Pellegrini M, Florea AM et al (2005) The delta e13 isoform of the calcitonin receptor forms a six-transmembrane domain receptor with dominant-negative effects on receptor surface expression and signaling. Mol Endocrinol 19:2132–2144PubMedPubMedCentralCrossRefGoogle Scholar
  202. Senthilkumar R, Srinivasan R (2019) Sex-specific spatial and temporal gene expressions of pheromone biosynthesis activating neuropeptide (PBAN) and binding proteins (PBP/OBP) in Spoladea recurvalis. Sci Rep 9:3515PubMedPubMedCentralCrossRefGoogle Scholar
  203. Serra M, Gauthier LT, Fabrias G, Buist PH (2006a) Delta11 desaturases of Trichoplusia ni and Spodoptera littoralis exhibit dual catalytic behaviour. Insect Biochem Mol Biol 36:822–825PubMedCrossRefGoogle Scholar
  204. Serra M, Piña B, Bujons J et al (2006b) Biosynthesis of 10, 12-dienoic fatty acids by a bifunctional Δ11desaturase in Spodoptera littoralis. Insect Biochem Mol Biol 36:634–641PubMedCrossRefGoogle Scholar
  205. Serra M, Piña B, Abad JL et al (2007) A multifunctional desaturase involved in the biosynthesis of the processionary moth sex pheromone. Proc Natl Acad Sci U S A 104:16444–16449PubMedPubMedCentralCrossRefGoogle Scholar
  206. Shapiro JP, Law JH, Wells MA (1988) Lipid transport in insects. Annu Rev Entomol 33:297–318PubMedCrossRefGoogle Scholar
  207. Sharma RK, Parameswaran S (2018) Calmodulin-binding proteins: a journey of 40 years. Cell Calcium 75:89–100PubMedCrossRefGoogle Scholar
  208. Shimizu I, Matsui T, Hasegawa K (1989) Possible involvement of GABAergic neurons in regulation of diapause hormone secretion in the silkworm, Bombyx mori. Zool Sci 6:809–812Google Scholar
  209. Shimomura M, Minami H, Suetsugu Y et al (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics 10:486PubMedPubMedCentralCrossRefGoogle Scholar
  210. Shiomi K, Kajiura Z, Nakagaki M, Yamashita O (2003) Baculovirus-mediated efficient gene transfer into the central nervous system of the silkworm, Bombyx mori. J Insect Biotech Sericology 72:149–155Google Scholar
  211. Shiomi K, Fujiwara Y, Yasukochi Y et al (2007) The Pitx homeobox gene in Bombyx mori: regulation of DH-PBAN neuropeptide hormone gene expression. Mol Cell Neurosci 34:209–218PubMedCrossRefGoogle Scholar
  212. Shiomi K, Takasu Y, Kunii M et al (2015) Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep:1–10Google Scholar
  213. Shuttleworth TJ, Thompson JL, Mignen O (2004) ARC channels: a novel pathway for receptor-activated calcium entry. Physiology (Bethesda) 19:355–361Google Scholar
  214. Slice LW, Wong HC, Sternini C et al (1994) The conserved NPXnY motif present in the gastrin-releasing peptide receptor is not a general sequestration sequence. J Biol Chem 269:21755–21761PubMedGoogle Scholar
  215. Soroker V, Rafaeli A (1989) In vitro hormonal stimulation of [14C]acetate incorporation by Heliothis armigera pheromone glands. Insect Biochemistry 19:1–5CrossRefGoogle Scholar
  216. Soroker V, Rafaeli A (1995) Multi-signal transduction of the pheromonotropic response by pheromone gland incubations of Helicoverpa armigera. Insect Biochem Mol Biol 25:1–9CrossRefGoogle Scholar
  217. Stahl A (2004) A current review of fatty acid transport proteins (SLC27). Pflugers Arch 447:722–727PubMedCrossRefGoogle Scholar
  218. Steinbrecht RA (1964) Feinstruktur und Histochemie der Sexualduftdrüse des Seidenspinners Bombyx mori L. Z Zellforsch Mikrosk Anat 64:227–261Google Scholar
  219. Stern PS, Yu L, Choi M-Y et al (2007) Molecular modeling of the binding of pheromone biosynthesis activating neuropeptide to its receptor. J Insect Physiol 53:803–818PubMedCrossRefGoogle Scholar
  220. Sztalryd C, Brasaemle DL (2017) The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophyis Acta - Mol Cell Biol Lipids 1862:1221–1232CrossRefGoogle Scholar
  221. Takeuchi K, Reue K (2009) Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296:E1195–E1209PubMedPubMedCentralCrossRefGoogle Scholar
  222. Tang JD, Charlton RE, Jurenka RA et al (1989) Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc Natl Acad Sci U S A 86:1806–1810PubMedPubMedCentralCrossRefGoogle Scholar
  223. Tawata M, Ichikawa T (2001) Circadian firing activities of neurosecretory cells releasing pheromonotropic neuropeptides in the silkmoth, Bombyx mori. Zool Sci 18:645–649CrossRefGoogle Scholar
  224. Teal PEA, Tumlinson JH, Oberlander H (1989) Neural regulation of sex pheromone biosynthesis in Heliothis moths. Proc Natl Acad Sci U S A 86:2488–2492PubMedPubMedCentralCrossRefGoogle Scholar
  225. Tehan BG, Bortolato A, Blaney FE et al (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60CrossRefGoogle Scholar
  226. Tips A, Schoofs L, Paemen L et al (1993) Co-localization of locustamyotropin-like and pheromone biosynthesis activating neuropeptide-like immunoreactivity in the central-nervous-system of five insect species. Comp Biochem Physiol A Comp Physiol 106:195–207CrossRefGoogle Scholar
  227. Tremblay JJ, Drouin J (1999) Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone beta gene transcription. Mol Cell Biol 19:2567–2576PubMedPubMedCentralCrossRefGoogle Scholar
  228. Trzaskowski B, Latek D, Yuan S et al (2012) Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem 19:1090–1109PubMedPubMedCentralCrossRefGoogle Scholar
  229. Tsfadia O, Azrielli A, Falach L et al (2008) Pheromone biosynthetic pathways: PBAN-regulated rate-limiting steps and differential expression of desaturase genes in moth species. Insect Biochem Mol Biol 38:552–567PubMedCrossRefGoogle Scholar
  230. Uehara H, Senoh Y, Yoneda K et al (2011) An FXPRLamide neuropeptide induces seasonal reproductive polyphenism underlying a life-history tradeoff in the tussock moth. PLoS One 6:e24213PubMedPubMedCentralCrossRefGoogle Scholar
  231. Urrutia J, Aguado A, Muguruza-Montero A et al (2019) The crossroad of ion channels and calmodulin in disease. Int J Mol Sci 20:400–422PubMedCentralCrossRefPubMedGoogle Scholar
  232. Van Hiel MB, Van Loy T, Poels J et al (2010) Neuropeptide receptors as possible targets for development of insect pest control agents. Adv Exp Med Biol 692:211–226PubMedCrossRefGoogle Scholar
  233. Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63PubMedCrossRefGoogle Scholar
  234. Waku Y, Sumimoto K-I (1969) Ultrastructure and secretory mechanism of the alluring gland cell in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). Appl Entomol Zool 4:135–146CrossRefGoogle Scholar
  235. Wang W, Qiao Y, Li Z (2018) New insights into modes of GPCR activation. Trends Pharmacol Sci 39:367–386PubMedCrossRefGoogle Scholar
  236. Watanabe K (1924) Studies on the voltinism of the silkworm, Bombyx mori. Bull Sericult Exp Sta (Tokyo) 6:411–455Google Scholar
  237. Watanabe K, Hull JJ, Niimi T et al (2007) FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cell Endocrinol 273:51–58PubMedCrossRefGoogle Scholar
  238. Whorton MR, Jastrzebska B, PS-H P et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394PubMedCrossRefGoogle Scholar
  239. Wu SF, Yu HY, Jiang TT et al (2015) Superfamily of genes encoding G protein-coupled receptors in the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Insect Mol Biol 24:442–453PubMedCrossRefGoogle Scholar
  240. Xu W-H, Denlinger DL (2003) Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biol 12:509–516PubMedCrossRefGoogle Scholar
  241. Xu W-H, Sato Y, Ikeda M, Yamashita O (1995a) Stage-dependent and temperature-controlled expression of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide in the silkworm, Bombyx mori. J Biol Chem 270:3804–3808PubMedCrossRefGoogle Scholar
  242. Xu W-H, Sato Y, Ikeda M, Yamashita O (1995b) Molecular characterization of the gene encoding the precursor protein of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) of the silkworm, Bombyx mori and its distribution in some insects. Biochim Biophys Acta Gene Struct Expr 1261:83–89CrossRefGoogle Scholar
  243. Yaginuma T, Niimi T (2015) FXPRLamide peptide family. In: handbook of hormones: comparative endocrinology for basic and. Clin Res:395Google Scholar
  244. Yamaoka R, Taniguchi Y, Hayashiya K (1984) Bombykol biosynthesis from deuterium-labeled (Z)-11-hexadecenoic acid. Experientia 40:80–81CrossRefGoogle Scholar
  245. Yang M, Wang W, Zhong M et al (2002) Lysine 270 in the third intracellular domain of the oxytocin receptor is an important determinant for G alpha(q) coupling specificity. Mol Endocrinol 16:814–823PubMedGoogle Scholar
  246. Yew JY, Chung H (2015) Insect pheromones: an overview of function, form, and discovery. Prog Lipid Res 59:88–105PubMedCrossRefGoogle Scholar
  247. Yokoyama N, Francke A, Tatsuki S et al (2003) Ultrastructural studies on the pheromone-producing cells in the silkmoth, Bombyx mori: formation of cytoplasmic lipid droplets before adult eclosion. Acta Biol Hung 54:299–311PubMedCrossRefGoogle Scholar
  248. Yoshiga T, Okano K, Mita K et al (2000) cDNA cloning of acyl-CoA desaturase homologs in the silkworm, Bombyx mori. Gene 246:339–345PubMedCrossRefGoogle Scholar
  249. Yoshiga T, Yokoyama N, Imai N et al (2002) cDNA cloning of calcineurin heterosubunits from the pheromone gland of the silkmoth, Bombyx mori. Insect Biochem Mol Biol 32:477–486PubMedCrossRefGoogle Scholar
  250. Ždárek J, Nachman RJ, Hayes TK (1998) Structure-activity relationships of insect neuropeptides of the pyrokinin/PBAN family and their selective action on pupariation in fleshfly (Neobelleria bullata) larvae (Diptera:Sarcophagidae). Eur J Entomol 95:9–16Google Scholar
  251. Ždárek J, Verleyen P, Mares M et al (2004) Comparison of the effects of pyrokinins and related peptides identified from arthropods on pupariation behaviour in flesh fly (Sarcophaga bullata) larvae (Diptera: Sarcophagidae). J Insect Physiol 50:233–239PubMedCrossRefGoogle Scholar
  252. Zhang Q, Denlinger DL (2012) Dynamics of diapause hormone and prothoracicotropic hormone transcript expression at diapause termination in pupae of the corn earworm, Helicoverpa zea. Peptides 34:120–126PubMedCrossRefGoogle Scholar
  253. Zhang T-Y, Kang L, Zhang Z-F, Xu W-H (2004) Identification of a POU factor involved in regulating the neuron-specific expression of the gene encoding diapause hormone and pheromone biosynthesis-activating neuropeptide in Bombyx mori. Biochem J 380:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  254. Zhang T-Y, Sun J-S, Liu W-Y et al (2005) Structural characterization and transcriptional regulation of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide in the cotton bollworm, Helicoverpa armigera. Biochim Biophys Acta 1728:44–52PubMedCrossRefGoogle Scholar
  255. Zhang S, Li X, Bin Z et al (2013) Molecular identification of a pancreatic lipase-like gene involved in sex pheromone biosynthesis of Bombyx mori. Insect Sci 21:459–468PubMedCrossRefGoogle Scholar
  256. Zhang S, Liu X, Zhu B et al (2014) Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling. PLoS One 9:e111003PubMedPubMedCentralCrossRefGoogle Scholar
  257. Zhang J, Walker WB, Wang G (2015) Pheromone reception in moths: from molecules to behaviors. Prog Mol Biol Trans Sci 130:109–128CrossRefGoogle Scholar
  258. Zhao C-H, Li Q, Gao W (2002) Stimulation of sex pheromone production by PBAN-like substance in the pine caterpillar moth, Dendrolimus punctatus (Lepidoptera: Lasiocampidae). Arch Insect Biochem Physiol 49:137–148PubMedCrossRefGoogle Scholar
  259. Zhao W, Li L, Zhang Y et al (2018) Calcineurin is required for male sex pheromone biosynthesis and female acceptance. Insect Mol Biol 72:173–110Google Scholar
  260. Zheng L, Lytle C, Njauw C-N et al (2007) Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor gene in Spodoptera littoralis larvae. Gene 393:20–30PubMedCrossRefGoogle Scholar
  261. Zmijewski MA, Slominski AT (2009) CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol 218:593–602PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.USDA-ARS, US Arid Land Agricultural Research CenterMaricopaUSA
  2. 2.Plant Protection Institute, Centre for Agricultural Research of Hungarian Academy of SciencesBudapestHungary

Personalised recommendations