Advertisement

Toward Robotic Applications of Insect Sex Pheromone-Searching Behavior: Lessons from the Silkmoth

  • Noriyasu AndoEmail author
  • Poonsup Pansopha Kono
Chapter
  • 22 Downloads
Part of the Entomology Monographs book series (ENTMON)

Abstract

The sex pheromone-searching behavior of insects is innate and highly reproducible. Therefore, pheromone-searching behavior has been an excellent model for understanding the odor-searching strategies of animals. Furthermore, pheromone-searching behavior has attracted the attention of engineers, aiming at developing autonomous odor-searching robots. In this chapter, we will first explain the fundamental strategy of pheromone-searching behavior used by insects, and then review recent advances in knowledge about the searching strategy of our model insect, the silkmoth (Bombyx mori), in terms of visual and olfactory integration. We next introduce our recent studies on a silkmoth-driven hybrid robot and show how silkmoths adaptively behave in challenging circumstances. Lastly, we discuss the future direction of biomimetic approaches to robotic odor searching.

Keywords

Pheromone-searching behavior Odor-searching robot Bombyx mori 

Notes

Acknowledgments

We are grateful to Professor Ryohei Kanzaki for supervising the studies introduced in this chapter. We also thank Dr. Michiyo Kinoshita for technical guidance during the neuroanatomical study on the visual pathways in the brain.

References

  1. Ando N, Kanzaki R (2015) A simple behaviour provides accuracy and flexibility in odour plume tracking – the robotic control of sensory-motor coupling in silkmoths. J Exp Biol 218(23):3845–3854.  https://doi.org/10.1242/jeb.124834CrossRefPubMedGoogle Scholar
  2. Ando N, Emoto S, Kanzaki R (2013) Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay. Bioinspir Biomim 8(1):016008.  https://doi.org/10.1088/1748-3182/8/1/016008CrossRefPubMedGoogle Scholar
  3. Ando N, Emoto S, Kanzaki R (2016) Insect-controlled robot: a Mobile robot platform to evaluate the odor-tracking capability of an insect. J Vis Exp 118:e54802.  https://doi.org/10.3791/54802CrossRefGoogle Scholar
  4. Baker TC, Willis MA, Haynes KF, Phelan PL (1985) A pulsed cloud of sex-pheromone elicits upwind flight in male moths. Physiol Entomol 10(3):257–265.  https://doi.org/10.1111/j.1365-3032.1985.tb00045.xCrossRefGoogle Scholar
  5. Bau J, Cardé RT (2015) Modeling optimal strategies for finding a resource-linked, windborne odor plume: theories, robotics, and biomimetic lessons from flying insects. Integr Comp Biol 55(3):461–477.  https://doi.org/10.1093/icb/icv036CrossRefPubMedGoogle Scholar
  6. Bau J, Justus KA, Loudon C, Carde RT (2005) Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem Senses 30(9):771–780.  https://doi.org/10.1093/chemse/bji069CrossRefPubMedGoogle Scholar
  7. Belanger JH, Arbas EA (1998) Behavioral strategies underlying pheromone-modulated flight in moths: lessons from simulation studies. J Comp Physiol A 183(3):345–360.  https://doi.org/10.1007/s003590050261CrossRefGoogle Scholar
  8. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(6):419–437.  https://doi.org/10.1007/s00359-002-0316-8CrossRefPubMedGoogle Scholar
  9. Borst A, Heisenberg M (1982) Osmotropotaxis in Drosophila melanogaster. J Comp Physiol 147(4):479–484CrossRefGoogle Scholar
  10. Borst A, Haag J, Reiff DF (2010) Fly Motion Vision. Annu Rev Neurosci 33:49–70.  https://doi.org/10.1146/annurev-neuro-060909-153155CrossRefPubMedGoogle Scholar
  11. Cardé RT (2016) Moth navigation along pheromone plumes. In: Allison JD, Carde RT (eds) Pheromone communication in moths evolution, behavior, and application. University of California Press, Oakland, pp 173–189Google Scholar
  12. Catania KC (2013) Stereo and serial sniffing guide navigation to an odour source in a mammal. Nat Commun 4:1441.  https://doi.org/10.1038/ncomms2444CrossRefPubMedGoogle Scholar
  13. Chow DM, Frye MA (2008) Context-dependent olfactory enhancement of optomotor flight control in Drosophila. J Exp Biol 211(Pt 15):2478–2485.  https://doi.org/10.1242/jeb.018879CrossRefPubMedGoogle Scholar
  14. Chow DM, Theobald JC, Frye MA (2011) An olfactory circuit increases the fidelity of visual behavior. J Neurosci 31(42):15035–15047.  https://doi.org/10.1523/JNEUROSCI.1736-11.2011CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9(8):587–600.  https://doi.org/10.1038/nrn2457CrossRefPubMedPubMedCentralGoogle Scholar
  16. Duistermars BJ, Chow DM, Frye MA (2009) Flies require bilateral sensory input to track odor gradients in flight. Curr Biol 19(15):1301–1307.  https://doi.org/10.1016/j.cub.2009.06.022CrossRefPubMedPubMedCentralGoogle Scholar
  17. Edwards S, Rutkowski AJ, Quinn RD (2005) Willis MA moth-inspired plume tracking strategies in three-dimensions. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 18–22 April 2005. pp 1669–1674.  https://doi.org/10.1109/ROBOT.2005.1570353
  18. Elkinton JS, Schal C, Onot T, CardÉ RT (1987) Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol Entomol 12(4):399–406.  https://doi.org/10.1111/j.1365-3032.1987.tb00766.xCrossRefGoogle Scholar
  19. Emoto S, Ando N, Takahashi H, Kanzaki R (2007) Insect-controlled robot—evaluation of adaptation ability. J Robot Mechatron 19(4):436–443CrossRefGoogle Scholar
  20. Fabre J-H, Miall B (1912) Social life in the insect world, vol viii, 327 p. Century, New YorkGoogle Scholar
  21. Floreano D, Ijspeert AJ, Schaal S (2014) Robotics and neuroscience. Curr Biol 24(18):R910–R920.  https://doi.org/10.1016/j.cub.2014.07.058CrossRefPubMedGoogle Scholar
  22. Frye MA (2003) Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol 206(5):843–855.  https://doi.org/10.1242/jeb.00175CrossRefPubMedGoogle Scholar
  23. Frye MA (2004) Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila. J Exp Biol 207(1):123–131.  https://doi.org/10.1242/jeb.00725CrossRefPubMedGoogle Scholar
  24. Frye MA (2010) Multisensory systems integration for high-performance motor control in flies. Curr Opin Neurobiol 20(3):347–352.  https://doi.org/10.1016/j.conb.2010.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gatellier L, Nagao T, Kanzaki R (2004) Serotonin modifies the sensitivity of the male silkmoth to pheromone. J Exp Biol 207(Pt 14):2487–2496.  https://doi.org/10.1242/jeb.01035CrossRefPubMedGoogle Scholar
  26. Gaudry Q, Hong EJ, Kain J, de Bivort BL, Wilson RI (2013) Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature 493(7432):424–428.  https://doi.org/10.1038/Nature11747CrossRefPubMedGoogle Scholar
  27. Gomez-Marin A, Duistermars BJ, Frye MA, Louis M (2010) Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 4:6.  https://doi.org/10.3389/fncel.2010.00006CrossRefPubMedPubMedCentralGoogle Scholar
  28. Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4(6):199–208.  https://doi.org/10.1007/Bf00272517CrossRefPubMedGoogle Scholar
  29. Gronenberg W, Strausfeld NJ (1990) Descending neurons supplying the neck and flight motor of diptera: physiological and anatomical characteristics. J Comp Neurol 302(4):973–991.  https://doi.org/10.1002/cne.903020420CrossRefPubMedGoogle Scholar
  30. Hangartner W (1967) Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld. Z Vergl Physiol 57(2):103–136.  https://doi.org/10.1007/BF00303068CrossRefGoogle Scholar
  31. Harvey D, Lu TF, Keller M (2006) Odor sensor requirements for an insect inspired plume tracking mobile robot. In: The 2006 IEEE international conference on robotics and biomimetics, 17–20 Dec. 2006, pp 130–135.  https://doi.org/10.1109/ROBIO.2006.340328CrossRefGoogle Scholar
  32. Haupt SS, Sakurai T, Namiki S, Kazawa T, Kanzaki R (2010) Olfactory information processing in Moths. In: Menini A (ed) The neurobiology of olfaction. Frontiers in neuroscience. CRC Press, Boca RatonGoogle Scholar
  33. Ikeno H, Kazawa T, Namiki S, Miyamoto D, Sato Y, Haupt SS, Nishikawa I, Kanzaki R (2012) Development of a scheme and tools to construct a standard moth brain for neural network simulations. Comput Intell Neurosci 2012:795291.  https://doi.org/10.1155/2012/795291CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ishida H, Wada Y, Matsukura H (2012) Chemical sensing in robotic applications: a review. IEEE Sensors J 12(11):3163–3173.  https://doi.org/10.1109/jsen.2012.2208740CrossRefGoogle Scholar
  35. Iwano M, Hill ES, Mori A, Mishima T, Mishima T, Ito K, Kanzaki R (2010) Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol 518(3):366–388.  https://doi.org/10.1002/cne.22224CrossRefGoogle Scholar
  36. Kaissling KE (1997) Pheromone-controlled anemotaxis in moths. In: Lehrer M (ed) Orientation and communication in arthropods, vol 84. EXS. Birkhäuser, Basel, pp 343–374.  https://doi.org/10.1007/978-3-0348-8878-3_12CrossRefGoogle Scholar
  37. Kanzaki R (2007) How does a microbrain generate adaptive behavior? Int Congr Ser 1301:7–14.  https://doi.org/10.1016/j.ics.2006.12.037CrossRefGoogle Scholar
  38. Kanzaki R, Shibuya T (1992) Long-lasting excitation of protocerebral bilateral neurons in the pheromone-processing pathways of the male moth Bombyx mori. Brain Res 587(2):211–215.  https://doi.org/10.1016/0006-8993(92)90999-PCrossRefPubMedGoogle Scholar
  39. Kanzaki R, Sugi N, Shibuya T (1992) Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool Sci 9(3):515–527Google Scholar
  40. Kanzaki R, Ikeda A, Shibuya T (1994) Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 175(1):1–14.  https://doi.org/10.1007/BF00217431CrossRefGoogle Scholar
  41. Kanzaki R, Soo K, Seki Y, Wada S (2003) Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth. Chem Senses 28(2):113–130CrossRefGoogle Scholar
  42. Kanzaki R, Nagasawa S, Shimoyama I (2004) Neural basis of odor-source searching behavior in insect Microbrain system evaluated with a mobile robot. In: Kato N, Ayers J, Morikawa H (eds) Bio-mechanisms of swimming and flying, 1st edn. Springer, Tokyo, pp 155–170CrossRefGoogle Scholar
  43. Katsumata S, Ando N, Kanzaki R (2009) An insect-sized atmospheric ion source localization robot for the evaluation of odor source localization algorithms of insects. J Robot Soc Jpn 27(7):711–717.  https://doi.org/10.7210/jrsj.27.711CrossRefGoogle Scholar
  44. Kellog VL (1907) Some silkworm moth reflexes. Biol Bull 12(3):152–154.  https://doi.org/10.2307/1535862CrossRefGoogle Scholar
  45. Kennedy JS (1983) Zigzagging and casting as a programmed response to wind-borne odor – a review. Physiol Entomol 8(2):109–120.  https://doi.org/10.1111/j.1365-3032.1983.tb00340.xCrossRefGoogle Scholar
  46. Kennedy JS, Marsh D (1974) Pheromone-regulated anemotaxis in flying moths. Science 184(4140):999–1001.  https://doi.org/10.1126/science.184.4140.999CrossRefPubMedGoogle Scholar
  47. Khan AG, Sarangi M, Bhalla US (2012) Rats track odour trails accurately using a multi-layered strategy with near-optimal sampling. Nat Commun 3:703.  https://doi.org/10.1038/ncomms1712CrossRefPubMedGoogle Scholar
  48. Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H (2014) Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori. PLoS One 9(11):e113156.  https://doi.org/10.1371/journal.pone.0113156CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kondoh Y, Obara Y (1984) Lesion studies of neural mechanisms underlying the mating dance of the silkmoth, Bombyx mori. J Ethol 2(1):11–16.  https://doi.org/10.1007/bf02348202CrossRefGoogle Scholar
  50. Kowadlo G, Russell RA (2008) Robot odor localization: a taxonomy and survey. Int J Robot Res 27(8):869–894.  https://doi.org/10.1177/0278364908095118CrossRefGoogle Scholar
  51. Kramer E (1997) A tentative intercausal nexus and its computer model on insect orientation in windborne pheromone plumes. In: Cardé R, Minks A (eds) Insect pheromone research. Springer, Boston, pp 232–247.  https://doi.org/10.1007/978-1-4615-6371-6_22CrossRefGoogle Scholar
  52. Kuwana Y, Shimoyama I, Miura H (1995) Steering control of a mobile robot using insect antennae. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human Robot Interaction and Cooperative Robots, 5–9 Aug. 1995. pp 530–535 vol.532.  https://doi.org/10.1109/IROS.1995.526267
  53. Kuwana Y, Shimoyama I, Sayama Y, Miura H (1996) Synthesis of pheromone-oriented emergent behavior of a silkworm moth. In: IEEE/RSJ international conference on intelligent robots and systems, 4–8 Nov 1996. pp 1722–1729.  https://doi.org/10.1109/IROS.1996.569043
  54. Kuwana Y, Nagasawa S, Shimoyama I, Kanzaki R (1999) Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens Bioelectron 14(2):195–202.  https://doi.org/10.1016/S0956-5663(98)00106-7CrossRefGoogle Scholar
  55. Lan B, Ando N, Kanzaki R (2017) Flying odour tracking robot with insect antennae. In: The 8th international symposium on adaptive motion of animals and machines, Sapporo, Japan, June 27–30 2017. pp 88–89Google Scholar
  56. Loudon C, Koehl MAR (2000) Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. J Exp Biol 203(19):2977–2990PubMedGoogle Scholar
  57. Mafra-Neto A, Carde RT (1994) Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369(6476):142–144.  https://doi.org/10.1038/369142a0CrossRefGoogle Scholar
  58. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13(3):393–399.  https://doi.org/10.1038/nn.2492CrossRefPubMedGoogle Scholar
  59. Martin H (1965) Osmotropotaxis in honey-bee. Nature 208(5005):59–63.  https://doi.org/10.1038/208059a0CrossRefGoogle Scholar
  60. Martinez D, Arhidi L, Demondion E, Masson JB, Lucas P (2014) Using insect electroantennogram sensors on autonomous robots for olfactory searches. J Vis Exp 90:e51704.  https://doi.org/10.3791/51704CrossRefGoogle Scholar
  61. Milde JJ, Gronenberg W, Strausfeld NJ (1992) The head-neck system of the blowfly calliphora: 2. Functional organization and comparisons with the sphinx moth manduca sexta. In: Alain B, Werner G, Vidal PP (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 64–70.  https://doi.org/10.1093/acprof:oso/9780195068207.003.0007CrossRefGoogle Scholar
  62. Mishima T, Kanzaki R (1999) Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori. J Comp Physiol A 184(2):143–160.  https://doi.org/10.1007/s003590050314CrossRefGoogle Scholar
  63. Miyamoto D, Kazawa T, Kanzaki R (2012) Neural circuit simulation of Hodgkin-Huxley type neurons toward Peta scale computers. In: 2012 SC companion: high performance computing, networking storage and analysis, 10–16 Nov. 2012. pp 1541–1541. doi: https://doi.org/10.1109/SC.Companion.2012.314
  64. Murlis J, Jones CD (1981) Fine-scale structure of odor plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol Entomol 6(1):71–86.  https://doi.org/10.1111/j.1365-3032.1981.tb00262.xCrossRefGoogle Scholar
  65. Murlis J, Elkinton JS, Cardé RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37(1):505–532.  https://doi.org/10.1146/annurev.en.37.010192.002445CrossRefGoogle Scholar
  66. Naeem W, Sutton R, Chudley J (2007) Chemical plume tracing and odour source localisation by autonomous vehicles. J Navig 60(2):173–190.  https://doi.org/10.1017/S0373463307004183CrossRefGoogle Scholar
  67. Nagasawa S, Kanzaki R, Shimoyama I (1999) Study of a small mobile robot that uses living insect antennae as pheromone sensors. In: IEEE/RSJ international conference on intelligent robots and systems, 1999. pp 555–560.  https://doi.org/10.1109/IROS.1999.813062
  68. Namiki S, Kanzaki R (2018) Morphology of visual projection neurons supplying premotor area in the brain of the silkmoth Bombyx mori. Cell Tissue Res 374:497.  https://doi.org/10.1007/s00441-018-2892-0CrossRefPubMedGoogle Scholar
  69. Namiki S, Haupt SS, Kazawa T, Takashima A, Ikeno H, Kanzaki R (2009) Reconstruction of virtual neural circuits in an insect brain. Front Neurosci 3(2):206–213.  https://doi.org/10.3389/neuro.01.028.2009CrossRefPubMedPubMedCentralGoogle Scholar
  70. Namiki S, Iwabuchi S, Pansopha Kono P, Kanzaki R (2014) Information flow through neural circuits for pheromone orientation. Nat Commun 5:5919.  https://doi.org/10.1038/ncomms6919CrossRefPubMedPubMedCentralGoogle Scholar
  71. Neumann PP, Hernandez Bennetts V, Lilienthal AJ, Bartholmai M, Schiller JH (2013) Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv Robot 27(9):725–738.  https://doi.org/10.1080/01691864.2013.779052CrossRefGoogle Scholar
  72. Obara Y (1979) Bombyx-mori mating dance - essential in locating the female. Appl Entomol Zool 14(1):130–132CrossRefGoogle Scholar
  73. Olberg RM (1983) Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol 152(3):297–307CrossRefGoogle Scholar
  74. Olsen SR, Wilson RI (2008) Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 31(10):512–520.  https://doi.org/10.1016/j.tins.2008.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pansopha Kono P (2018) A study on state-dependent multisensory integration for odor-source localization. Dissertation, The University of Tokyo, ToykoGoogle Scholar
  76. Pansopha P, Ando N, Kanzaki R (2014) Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori. J Exp Biol 217(Pt 10):1811–1820.  https://doi.org/10.1242/jeb.090266CrossRefPubMedGoogle Scholar
  77. Porter J, Craven B, Khan RM, Chang SJ, Kang I, Judkewitz B, Volpe J, Settles G, Sobel N (2007) Mechanisms of scent-tracking in humans. Nat Neurosci 10(1):27–29.  https://doi.org/10.1038/nn1819CrossRefPubMedGoogle Scholar
  78. Pyk P, Bermúdez i Badia S, Bernardet U, Knüsel P, Carlsson M, Gu J, Chanie E, Hansson BS, Pearce TC, PFMJ V (2006) An artificial moth: chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Auton Robot 20(3):197–213.  https://doi.org/10.1007/s10514-006-7101-4CrossRefGoogle Scholar
  79. Rajan R, Clement JP, Bhalla US (2006) Rats smell in stereo. Science 311(5761):666–670.  https://doi.org/10.1126/science.1122096CrossRefPubMedGoogle Scholar
  80. Reeder PB, Ache BW (1980) Chemotaxis in the Florida spiny lobster, Panulirus argus. Anim Behav 28(Aug):831–839.  https://doi.org/10.1016/S0003-3472(80)80143-6CrossRefGoogle Scholar
  81. Rosner R, Egelhaaf M, Warzecha AK (2010) Behavioural state affects motion-sensitive neurones in the fly visual system. J Exp Biol 213(2):331–338.  https://doi.org/10.1242/Jeb.035386CrossRefPubMedGoogle Scholar
  82. Russell RA, Bab-Hadiashar A, Shepherd RL, Wallace GG (2003) A comparison of reactive robot chemotaxis algorithms. Robot Auton Syst 45(2):83–97.  https://doi.org/10.1016/s0921-8890(03)00120-9CrossRefGoogle Scholar
  83. Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R (2011) A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS Genet 7(6).  https://doi.org/10.1371/journal.pgen.1002115CrossRefGoogle Scholar
  84. Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex pheromone reception and processing in the silkmoth Bombyx mori. Front Physiol 5.  https://doi.org/10.3389/fphys.2014.00125
  85. Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Sezutsu H, Kanzaki R (2015) Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci Rep 5:11001.  https://doi.org/10.1038/srep11001CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sato Y, Haupt SS, Kazawa T, Namiki S, Takashima A, Ikeno H, Nishikawa I, Kanzaki R (2010) Large-scale realistic network simulation of pheromone-processing circuits in the silkmoth brain. Front Neurosci Conf Abstr: Neuroin 4.  https://doi.org/10.3389/conf.fnins.2010.13.00050
  87. Seki Y, Aonuma H, Kanzaki R (2005) Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry. J Comp Neurol 481(4):340–351.  https://doi.org/10.1002/cne.20392CrossRefPubMedPubMedCentralGoogle Scholar
  88. Szyszka P, Stierle JS, Biergans S, Galizia CG (2012) The speed of smell: odor-object segregation within milliseconds. PLoS One 7(4):e36096.  https://doi.org/10.1371/journal.pone.0036096CrossRefPubMedPubMedCentralGoogle Scholar
  89. Szyszka P, Gerkin RC, Galizia CG, Smith BH (2014) High-speed odor transduction and pulse tracking by insect olfactory receptor neurons. Proc Natl Acad Sci U S A 111(47):16925–16930.  https://doi.org/10.1073/pnas.1412051111CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tabuchi M, Sakurai T, Mitsuno H, Namiki S, Minegishi R, Shiotsuki T, Uchino K, Sezutsu H, Tamura T, Haupt SS, Nakatani K, Kanzaki R (2013) Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 110(38):15455–15460.  https://doi.org/10.1073/pnas.1313707110CrossRefPubMedPubMedCentralGoogle Scholar
  91. Takasaki T, Namiki S, Kanzaki R (2012) Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori. J Comp Physiol A 198(4):295–307.  https://doi.org/10.1007/s00359-011-0708-8CrossRefGoogle Scholar
  92. van Breugel F, Dickinson MH (2014) Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr Biol 24(3):274–286.  https://doi.org/10.1016/j.cub.2013.12.023CrossRefPubMedGoogle Scholar
  93. Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198(2):203–212CrossRefGoogle Scholar
  94. Vickers NJ, Baker TC (1991) The effects of unilateral antennectomy on the flight behavior of Male Heliothis-Virescens in a Pheromone Plume. Physiol Entomol 16(4):497–506.  https://doi.org/10.1111/j.1365-3032.1991.tb00589.xCrossRefGoogle Scholar
  95. Vickers NJ, Baker TC (1996) Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males. J Comp Physiol A 178(6):831–847.  https://doi.org/10.1007/BF00225831CrossRefGoogle Scholar
  96. von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip – (Wechselwirkungen Zwischen Zentralnervensystem Und Peripherie). Naturwissenschaften 37(20):464–476CrossRefGoogle Scholar
  97. von Uexküll J, Kriszat G (1956) Streifzüge durch die Umwelt von Tieren und Menschen/Bedeutungslehre. Rowohlt, HamburgGoogle Scholar
  98. Wada S, Kanzaki R (2005) Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron. J Comp Neurol 484(2):168–182.  https://doi.org/10.1002/cne.20452CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wall C, Perry JN (1987) Range of action of moth sex-attractant sources. Entomol Exp Appl 44(1):5–14.  https://doi.org/10.1111/j.1570-7458.1987.tb02232.xCrossRefGoogle Scholar
  100. Webb B (1998) Robots, crickets and ants: models of neural control of chemotaxis and phonotaxis. Neural Netw 11(7–8):1479–1496.  https://doi.org/10.1016/S0893-6080(98)00063-XCrossRefPubMedGoogle Scholar
  101. Webb B (2002) Robots in invertebrate neuroscience. Nature 417(6886):359–363.  https://doi.org/10.1038/417359aCrossRefPubMedGoogle Scholar
  102. Webb B (2004) Neural mechanisms for prediction: do insects have forward models? Trends Neurosci 27(5):278–282.  https://doi.org/10.1016/j.tins.2004.03.004CrossRefPubMedGoogle Scholar
  103. Webb B, Harrison RR, Willis MA (2004) Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Struct Dev 33(3):301–329.  https://doi.org/10.1016/j.asd.2004.05.009CrossRefPubMedGoogle Scholar
  104. Wei L, Farrell JA, Shuo P, Arrieta RM (2006) Moth-inspired chemical plume tracing on an autonomous underwater vehicle. Ieee T Robot 22(2):292–307.  https://doi.org/10.1109/TRO.2006.870627CrossRefGoogle Scholar
  105. Willis MA (2008) Chemical plume tracking behavior in animals and mobile robots. Navigation 55(2):127–135CrossRefGoogle Scholar
  106. Willis MA, Avondet JL, Zheng E (2011) The role of vision in odor-plume tracking by walking and flying insects. J Exp Biol 214(Pt 24):4121–4132.  https://doi.org/10.1242/jeb.036954CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM (2016) Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. elife 5.  https://doi.org/10.7554/eLife.21022

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Department of Systems Life EngineeringMaebashi Institute of TechnologyGunmaJapan

Personalised recommendations