Advertisement

Mechanism of Microbial Adaptation and Survival Within Psychrophilic Habitat

  • Xiuling Ji
  • Yunlin Wei
Chapter
  • 72 Downloads

Abstract

Microorganisms which are able to grow in environments with low temperature (5 °C or below) are known as psychrophiles. They are widely distributed in the world and play significant roles in biological evolution and maintain the balance of the Earth’s biosphere. Their habitats include natural frozen soil, ocean, lake, glacier, polar, sea ice, and other artificial environmental areas. The mechanisms of microbial cold adaptation and survival have attracted more attentions in the past decades. Well-known strategies include the accumulation of low molecular mass carbohydrate cryoprotectants, adjusting membrane lipid composition, use of cold-active small molecules or antifreeze proteins that inhibit ice recrystallization, and synthesis of cold-adapted enzymes. Understanding the molecular mechanism and adaptation mechanism of psychrophilic microorganisms will provide new pathway for biological evolution and benefit in applications of psychrophilic microbes in the future.

Keywords

csp gene Chaperones Antifreeze proteins Proteome Enzymes 

References

  1. Aakvik T, Degnes KF, Dahlsrud R et al (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296:149–158PubMedGoogle Scholar
  2. Adekoya OA, Helland R, Willassen N, Sylte I (2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Protein 62:435–449.  https://doi.org/10.1002/prot.20773Google Scholar
  3. Al-Fageeh MB, Smales CM (2009) Cold-inducible RNA binding protein (CIRP) expression is modulated by alternative mRNAs. RNA NY 15(6):1164–1176.  https://doi.org/10.1261/rna.1179109Google Scholar
  4. Anwar MN, Li ZF, Gong Y, Singh RP, Li YZ (2019) Omics studies revealed the factors involved in the formation of colony boundary in Myxococcus xanthus. Cell 8(6):530.  https://doi.org/10.3390/cells8060530Google Scholar
  5. Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. PNAS 97(14):7784–7789.  https://doi.org/10.1073/pnas.97.14.7784PubMedGoogle Scholar
  6. Baneyx F, Mujacic M (2002) Cold-inducible promoters for heterologous protein expression. Methods Mol Biol 205. E. coli gene expression protocols Edited by: P. E. Vaillancourt © Humana Press Inc., Totowa, NJGoogle Scholar
  7. Berny JF, Hennebert G (1991) Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycol 83(6):805–815.  https://doi.org/10.2307/3760439Google Scholar
  8. Caruso C, Rizzo C, Mangano S, Poli A, Di DP et al (2018) Production and biotechnological potential of extracellular polymeric substances from sponge-associated Antarctic bacteria. Appl. Environ Microbial 84(4):e01624–e01617.  https://doi.org/10.1128/AEM.01624-17Google Scholar
  9. Casillo A, Di GR, Carillo S, Chen C, Kamasaka K, Kawamoto J, Corsaro MM (2019) Structural elucidation of a novel lipooligosaccharide from the Antarctic bacterium OMVs producer Shewanella sp. HM13. Marine drug 17(1):34.  https://doi.org/10.3390/md17010034Google Scholar
  10. Cavicchioli R (2016) On the concept of a psychrophile. ISME J 10:793–795PubMedGoogle Scholar
  11. Cedric YS, Michel F, Martine C (2001) Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. J Bacteriol 183(6):2101–2110.  https://doi.org/10.1128/JB.183.6.2101-2110.2001Google Scholar
  12. Charollais J, Dreyfus M, Iost I (2004) CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res 32:2751–2759.  https://doi.org/10.1093/nar/gkh603PubMedPubMedCentralGoogle Scholar
  13. Choo DW, Tatsuo K, Takeshi S, Kenji S, Nobuyoshi E (1988) A cold-adapted lipase of an Alaskan Psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64(2):486–491Google Scholar
  14. Cody WL, Wilson JW, Hendrixson DR, McIver KS, Hagman KE et al (2008) Skim milk enhances the preservation of thawed −80 °C bacterial stocks. J Microbial Method 75(1):135–138.  https://doi.org/10.1016/j.mimet.2008.05.006Google Scholar
  15. Czajka JJ, Abernathy MH, Benites VT, Baidoo EEK, Deming JW et al (2018) Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H. Proc Natl Acad Sci U S A 115(49):12507–12512PubMedPubMedCentralGoogle Scholar
  16. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralGoogle Scholar
  17. Dong D, Ihara T, Motoshima H, Watanabe K (2005) Crystallization and preliminary X-ray crystallographic studies of a psychrophilic subtilisin-like protease Apa1 from Antarctic Pseudoalteromonas sp. strain AS-11. Acta Crystallogr Sect F Struct Biol Cryst Commun 61(3):308–311PubMedPubMedCentralGoogle Scholar
  18. Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic gram-negative bacteria. In: Balbás P, Lorence A (eds) Recombinant gene expression, Methods in molecular biology, vol 267. Humana PressGoogle Scholar
  19. Ewert M, Deming JW (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52:111–117Google Scholar
  20. Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo) 2013:1–28Google Scholar
  21. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedPubMedCentralGoogle Scholar
  22. Fornbacke M, Clarsund M (2013) Cold-adapted proteases as an emerging class of therapeutics. Inf Dis Ther 2(1):15–26.  https://doi.org/10.1007/s40121-013-0002-xGoogle Scholar
  23. Giuliodori AM, Pietro FD, Marzi S, Masquida B, Wagner R, Romby P et al (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37(1):21–33.  https://doi.org/10.1016/j.molcel.2009.11.033PubMedGoogle Scholar
  24. Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287PubMedPubMedCentralGoogle Scholar
  25. Gottesman S (2018) Chilled in translation: adapting to bacterial climate change. Mol Cell 70(2):193–194PubMedGoogle Scholar
  26. Guieysse B, Autem Y, Soares A (2005) Biodegradation of phenol at low temperature using two-phase partitioning bioreactors. Water Sci Technol 52(10–11):97–105PubMedGoogle Scholar
  27. Habibu A, Pieter DM, Don C (2016) The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 92(4):fiw032.  https://doi.org/10.1093/femsec/fiw032Google Scholar
  28. Hashimoto-Gotoh T, Timmis KN (1981) Incompatibility properties of Col E1 and pMB1 derivative plasmids: random replication of multicopy replicons. Cell 23(1):229–238.  https://doi.org/10.1016/0092-8674(81)90287-7PubMedGoogle Scholar
  29. Hoyoux A, Jennes I, Dubois P et al (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535PubMedPubMedCentralGoogle Scholar
  30. Joers A, Tenson T (2016) Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci Report 6:24055.  https://doi.org/10.1038/srep24055Google Scholar
  31. John PB, Carol MN, John AEG (2003) Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorphaignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53(5):1343–1355Google Scholar
  32. Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095PubMedPubMedCentralGoogle Scholar
  33. Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK et al (2008) Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins 71:476–484PubMedGoogle Scholar
  34. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1998) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70(1):191–197.  https://doi.org/10.1016/0378-1119(88)90117-5Google Scholar
  35. Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M et al (2016) Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbial 7:1151.  https://doi.org/10.3389/fmicb.2016.01151Google Scholar
  36. Knoblauch C, Jørgensen BB, Harder J (1999) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. App Environ Microbiol 65(9):4230–4233Google Scholar
  37. Koh HY, Park H, Lee JH, Han SJ, Sohn YC (2017) Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures. Environ Microbiol 19(2):628–644.  https://doi.org/10.1111/1462-2920.13578PubMedGoogle Scholar
  38. Kumar S, Jagannadham MV, Ray MK (2002) Low-temperature-induced changes in composition and fluidity of lipopolysaccharides in the Antarctic psychrotrophic bacterium Pseudomonas syringae. J Bact 184(23):6746–6749.  https://doi.org/10.1128/JB.184.23.6746-6749.2002PubMedGoogle Scholar
  39. Leppek K, Das R, Barna M (2018) Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19(3):158–174.  https://doi.org/10.1038/nrm.2017.103PubMedGoogle Scholar
  40. Lipson DA, Schmidt SK, Monson RK (1999) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecol 80:1623–1631Google Scholar
  41. Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448Google Scholar
  42. Margesin R, Fonteyne PA, Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res Microbiol 156(1):68–75PubMedGoogle Scholar
  43. Meyer AF, Lipson DA, Martin AP, Schadt CW, Schmidt SK (2004) Molecular and metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbial 70(1):483–489.  https://doi.org/10.1128/aem.70.1.483-489.2004Google Scholar
  44. Mocali S, Chiellini S, Fabiani S, Decuzzi A, Pascale S et al (2017) Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 7(1):1–13Google Scholar
  45. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedPubMedCentralGoogle Scholar
  46. Mujacic M, Cooper KW, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238(2):325–332.  https://doi.org/10.1016/S0378-1119(99)00328-5PubMedGoogle Scholar
  47. Muñoz PA, Márquez SL, González-Nilo FD, Márquez-Miranda V, Blamey JM (2017) Structure and application of antifreeze proteins from Antarctic bacteria. Microb Cell Factories 16(1):138.  https://doi.org/10.1186/s12934-017-0737-2Google Scholar
  48. Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW et al (2013) Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226.  https://doi.org/10.1038/ismej.2013.8PubMedPubMedCentralGoogle Scholar
  49. Ohgiya S, Hoshino T, Okuyama H, Tanaka S, Ishizaki K (1999) Biotechnology of enzymes from cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin/HeidelbergGoogle Scholar
  50. Olivera-Nappa A, Reyes F, Andrews BA, Asenjo JA (2013) Cold adaptation, Ca2+ dependency and autolytic stability are related features in a highly active cold-adapted trypsin resistant to autoproteolysis engineered for biotechnological applications. PLoS One 8(8):e72355.  https://doi.org/10.1371/journal.pone.0072355PubMedPubMedCentralGoogle Scholar
  51. Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127(2):199–210.  https://doi.org/10.1016/j.jbiotec.2006.07.003PubMedGoogle Scholar
  52. Park JW, Oh YS, Lim JY, Roh DH (2006) Isolation and characterization of cold-adapted strains producing beta-galactosidase. J Microbiol 44(4):396–402PubMedGoogle Scholar
  53. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6:125–136PubMedGoogle Scholar
  54. Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245.  https://doi.org/10.1074/jbc.M111496200PubMedGoogle Scholar
  55. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustain 2(6):1602–1623Google Scholar
  56. Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG (2018) Comparative transcriptomics of cold growth and adaptive features of a eury- and steno-psychrophile. Front Microbial 9:1565.  https://doi.org/10.3389/fmicb.2018.01565Google Scholar
  57. Rodrigues DF, Ivanova NHZ, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547.  https://doi.org/10.1186/1471-2164-9-547PubMedPubMedCentralGoogle Scholar
  58. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408.  https://doi.org/10.3389/fmicb.2016.01408PubMedPubMedCentralGoogle Scholar
  59. Schmidhauser TJ, Helinski DR (1985) Regions of the broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bacteriol 164:446–455PubMedPubMedCentralGoogle Scholar
  60. Siani L, Papa R, Di DA, Sannia G (2006) Recombinant expression of Toluene o-Xylene Monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. J Biotechnol 126(3):334–341Google Scholar
  61. Soares A, Guieysse B, Delgado O et al (2003) Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25:731.  https://doi.org/10.1023/A:1023466916678PubMedGoogle Scholar
  62. Sobecky PA, Mincer TJ, Chang MC, Toukdarian A, Helinski DR (1998) Isolation of broad-host-range replicons from marine sediment bacteria. Appl Environ Microbial 64(8):2822–2830Google Scholar
  63. Subhashini DV, Singh RP, Manchanda G (2017) OMICS approaches: tools to unravel microbial systems. Directorate of Knowledge Management in Agriculture, Indian Council of Agricultural Research. ISBN: 9788171641703. https://books.google.co.in/books?id=vSaLtAEACAAJ
  64. Tian Y, Li YL, Zhao FC (2017) Secondary metabolites from polar organisms. M drug 15(3):28.  https://doi.org/10.3390/md15030028Google Scholar
  65. Tribelliand PM, López NI (2018) Reporting key features in cold-adapted bacteria. Life 8(1):1–12Google Scholar
  66. Turkiewicz M, Kur J, Białkowska A, Cieśliński H, Kalinowska H, Bielecki S (2003) Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted beta-galactosidase. Biomol Eng 20(4–6):317–324PubMedGoogle Scholar
  67. Tutino ML, Parrilli E, Giaquinto L, Duilio A, Sannia G et al (2002) Secretion of alpha-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. J Bacteriol 184(20):5814–5817.  https://doi.org/10.1128/jb.184.20.5814-5817PubMedPubMedCentralGoogle Scholar
  68. Wang Z, Wang S, Wu Q (2014) Cold shock protein a plays an important role in the stress adaptation and virulence of Brucella melitensis. FEMS Microbiol Lett 354:27–36.  https://doi.org/10.1111/1574-6968.12430PubMedGoogle Scholar
  69. Wilson S, Kelley D, Walker V (2006) Ice-active characteristics of soil bacteria selected by ice-affinity. Environ Microbiol 8:816–824.  https://doi.org/10.1111/j.1462-2920.2006.01066.xGoogle Scholar
  70. Xiong H, Song L, Xu Y et al (2007) Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. J Ind Microbiol Biotechnol 34:63.  https://doi.org/10.1007/s10295-006-0165-5PubMedGoogle Scholar
  71. You YW, Wang TH (2005) Cloning and expression of endoglucanase of marine cold-adapted bacteria Pseudoalteromonas sp. MB-1. W. Sheng W. X. B 45(1):142–144Google Scholar
  72. Zheng Y, Li Y, Liu W, Chen CC, Ko TP et al (2016) Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J Struct Biol 193(3):206–211.  https://doi.org/10.1016/j.jsb.2015.12.010PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Xiuling Ji
    • 1
  • Yunlin Wei
    • 1
  1. 1.Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations