Advertisement

Neovascular AMD

  • Eric H. SouiedEmail author
  • Francesca Amoroso
Chapter
  • 72 Downloads
Part of the Retina Atlas book series (RA)

Abstract

Neovascular AMD is defined by the presence of choroidal and/or intraretinal neovascularization with associated exudation, bleeding, and disciform scar (Ferris III et al. 1984). Choroidal neovascularization (CNV) is characterized by an abnormal growth of newly formed vessels within the macular area.

Abbreviations

BNV

Branching type 1 neovascular network

BVN

Branching vascular network

CNV

Choroidal neovascularization

CRA

Chorio-retinal anastomosis

ICGA

ICG angiography

NV

Neovascularization

OCRA

Occult choroidal retinal anastomosis

OCTA

OCT-Angiography

PCV

Polypoidal choroidal vasculopathy

PDT

Photodynamic therapy

PED

Pigment epithelium detachment

PRN

“Pro-Re-Nata”

RAP

Retinal angiomatous proliferation

RPE

Retinal pigment epithelium

SRD

Serous retinal detachment

SRF

Subretinal fluid

VEGF

Vascular endothelial growth factor

v-PED

Vascularized PED

References

  1. Bloch SB, Lund-Andersen H, Sander B, Larsen M. Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol. 2013;156:116–24.PubMedCrossRefGoogle Scholar
  2. Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116:57–65.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. CATT Research Group, Martin DF, Maguire MG, Ying G, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–908.CrossRefGoogle Scholar
  4. Channa R, Sophie R, Bagheri S, et al. Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol. 2015;159:9–19.PubMedCrossRefGoogle Scholar
  5. Ciardella AP, Donsoff IM, Huang SJ, et al. Polypoidal choroidal vasculopathy. Surv Ophthalmol. 2004;49:25–37.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cohen SY, Creuzot-Garcher C, Darmon J, et al. Types of choroidal neovascularization in newly diagnosed exudative age-related macular degeneration. Br J Ophthalmol. 2007a;91:1173–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cohen SY, Dubois L, Tadayoni R, et al. Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation. Br J Ophthalmol. 2007b;91:354–9.PubMedCrossRefGoogle Scholar
  8. Cohen SY, Oubraham H, Uzzan J, et al. Causes of unsuccessful ranibizumab treatment in exudative age-related macular degeneration in clinical settings. Retina. 2012;32:1480–5.PubMedCrossRefGoogle Scholar
  9. Coscas G, De Benedetto U, Coscas F, et al. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Int J Ophthalmol. 2013;229:32–7.Google Scholar
  10. De Salvo G, Vaz-Pereira S, Keane PA, et al. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 2014;158:1228–38.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  11. El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina. 2015;35:2212–8.PubMedCrossRefGoogle Scholar
  12. Ferris FL III, Fine SL, Hyman L. Age related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 1984;102:1640–2.PubMedCrossRefGoogle Scholar
  13. Freund B, Ho I-V, Barbazetto I, et al. Type 3 neovascularization. The expanded spectrum of retinal angiomatous proliferation. Retina. 2008;28:201–11.PubMedCrossRefGoogle Scholar
  14. Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina. 2010;30:1333–49.PubMedCrossRefGoogle Scholar
  15. Gass JDM, Agarwal A, Lavina AM, et al. Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal anastomosis. Retina. 2003;23:241–51.Google Scholar
  16. Gelisken F, Inhoffen W, Schneider U, et al. Indocyanine green angiography in classic choroidal neovascularization. Jpn J Ophthalmol. 1998;42:300–3.PubMedCrossRefGoogle Scholar
  17. Gross NE, Aizman A, Brucker A, Klancnik JM Jr, Yannuzzi LA. Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina. 2005;25:713–8.PubMedCrossRefGoogle Scholar
  18. Grossniklaus HE, Gass JD. Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol. 1998;126:59–69.PubMedCrossRefGoogle Scholar
  19. Hartnett ME, Weiter JJ, Gardts A, Jalkh AE. Classification of retinal pigment epithelial detachments associated with drusen. Graefes Arch Clin Exp Ophthalmol. 1992;230:11–9.PubMedCrossRefGoogle Scholar
  20. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119:2537–48.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Holz FG, Amoaku W, Donate J, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology. 2011;118:663–71.PubMedCrossRefGoogle Scholar
  22. Hwang JC, Del Priore LV, Freund KB, et al. Development of subretinal fibrosis after anti-VEGF treatment in neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2011;42:6–11.PubMedCrossRefGoogle Scholar
  23. Iijima H, Imai M, Gohdo T, et al. Optical coherence tomography of idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol. 1999;127:301–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. IVAN Study Investigators, Chakravarthy U, Harding SP, Rogers CA, et al. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology. 2012;119:1399–411.CrossRefGoogle Scholar
  25. Jung JJ, Chen CY, Mrejen S, et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am J Ophthalmol. 2014;158:769–79.PubMedCrossRefGoogle Scholar
  26. Kim JH, Kim JR, Kang SJ, Ha HS. Thinner choroid and greater drusen extent in retinal angiomatous proliferation than in typical exudative age-related macular degeneration. Am J Ophthalmol. 2013;155(743–9):749.Google Scholar
  27. Kodjikian L, Souied EH, Mimoun G, et al. Ranibizumab versus bevacizumab for neovascular age-related macular degeneration: results from the GEFAL noninferiority randomized trial. Ophthalmology. 2013;120:2300–9.PubMedCrossRefGoogle Scholar
  28. Kuehlewein L, Bansal M, Lenis LT, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160:739–48.PubMedCrossRefGoogle Scholar
  29. Kuhn D, Meunier I, Soubrane G, Coscas G. Imaging of chorioretinal anastomoses in vascularized retinal pigment epithelium detachments. Arch Ophthalmol. 1995;113:1392–8.PubMedCrossRefGoogle Scholar
  30. Lalwani GA, Rosenfeld PJ, Fung AE, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009;148:43–58.e1.PubMedCrossRefGoogle Scholar
  31. Lam D, Semoun O, Blanco-Garavito R, et al. Wrinkled vascularized retinal pigment epithelium detachment prognosis after intravitreal anti-VEGF therapy. Retina. 2017;38:1100–9.CrossRefGoogle Scholar
  32. Laude A, Cackett PD, Vithana EN, et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: same or different disease? Prog Retin Eye Res. 2010;29:19–29.PubMedCrossRefGoogle Scholar
  33. Mantel I, Niderprim S-A, Gianniou C, et al. Reducing the clinical burden of ranibizumab treatment for neovascular age-related macular degeneration using an individually planned regimen. Br J Ophthalmol. 2014;98:1192–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Miere A, Querques G, Semoun O, et al. Optical coherence tomography angiography in early type 3 neovascularization. Retina. 2015a;35:2236–41.PubMedCrossRefGoogle Scholar
  35. Miere A, Semoun O, Cohen SY, et al. Optical coherence tomography angiography features of subretinal fibrosis in age-related macular degeneration. Retina. 2015b;35:2275–84.PubMedCrossRefGoogle Scholar
  36. Mrejen S, Sarraf D, Mukkamala SK, Freund KB. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013;33:1735–62.PubMedCrossRefGoogle Scholar
  37. Nagiel A, Sarraf D, Sadda SR, et al. Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography. Retina. 2015;35:638–47.PubMedCrossRefGoogle Scholar
  38. Ores R, Puche N, Querques G, et al. Gray hyper-reflective subretinal exudative lesions in exudative age-related macular degeneration. Am J Ophthalmol. 2014;158:354–61.PubMedCrossRefGoogle Scholar
  39. Otsuji T, Takahashi K, Fukushima I, et al. Optical coherence tomographic findings of idiopathic polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers. 2000;31:210–4.Google Scholar
  40. Pang CE, Messinger JD, Zanzottera EC, et al. The Onion Sign in neovascular age-related macular degeneration represents cholesterol crystals. Ophthalmology. 2015;122:2316–26.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Querques G, Atmani K, Berboucha E, et al. Angiographic analysis of retinal-choroidal anastomosis by confocal scanning laser ophthalmoscopy technology and corresponding (eye-tracked) spectral-domain optical coherence tomography. Retina. 2010;30:222–34.PubMedCrossRefGoogle Scholar
  42. Querques G, Querques L, Forte R, et al. Precursors of type 3 neovascularization: a multimodal imaging analysis. Retina. 2013a;33:1241–8.PubMedCrossRefGoogle Scholar
  43. Querques G, Souied EH, Freund KB. Multimodal imaging of early stage 1 type 3 neovascularization with simultaneous eye-tracked spectral-domain optical coherence tomography and high-speed real-time angiography. Retina. 2013b;33:1881–7.PubMedCrossRefGoogle Scholar
  44. Querques G, Srour M, Massmaba N, et al. Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. Invest Ophthalmol Vis Sci. 2013c;54:6886–92.PubMedCrossRefGoogle Scholar
  45. Querques G, Souied EH, Freund KB. How has high-resolution multimodal imaging refined our understanding of the vasogenic process in type 3 neovascularization? Retina. 2015;35:603–13.PubMedCrossRefGoogle Scholar
  46. Querques G, Capuano V, Costanzo E, et al. Retinal pigment epithelium aperture: a previously unreported finding in the evolution of avascular pigment epithelium detachment. Retina. 2016;36(Suppl 1):S65–72.PubMedCrossRefGoogle Scholar
  47. Rahimy E, Freund KB, Larsen M. Multilayered pigment epithelial detachment in neovascular age-related macular degeneration. Retina. 2014;34:1289–95.PubMedCrossRefGoogle Scholar
  48. Regillo CD, Brown DM, Abraham P, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol. 2008;145:239–48.PubMedCrossRefGoogle Scholar
  49. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Rosenfeld PJ, Shapiro H, Tuomi L, et al. Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology. 2011;118:523–30.PubMedCrossRefGoogle Scholar
  51. Sa HS, Cho HY, Kang SW. Optical coherence tomography of idiopathic polypoidal choroidal vasculopathy. Korean J Ophthalmol. 2005;19:275–80.PubMedCrossRefGoogle Scholar
  52. Sato T, Kishi S, Watanabe G, et al. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina. 2007;27:589–94.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2004;242:91–101.PubMedCrossRefGoogle Scholar
  54. Semoun O, Guigui B, Tick S, et al. Infrared features of classic choroidal neovascularization in exudative age related macular degeneration. Br J Ophthalmol. 2009;93:182–5.PubMedCrossRefGoogle Scholar
  55. Spaide R. Ranibizumab according to need: a treatment for age-related macular degeneration. Am J Ophthalmol. 2007;143:679–80.PubMedCrossRefGoogle Scholar
  56. Spaide RF, Yannuzzi LA, Slakter JS, et al. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995;15:100–10.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016;100(11):1489–93.PubMedCrossRefGoogle Scholar
  58. Toth LA, Stevenson M, Chakravarthy U. Anti-vascular endothelial growth factor therapy for neovascular age-related macular: outcomes in eyes with poor initial vision. Retina. 2015;35:1957–63.PubMedCrossRefGoogle Scholar
  59. Yannuzzi LA. Idiopathic polypoidal choroidal vasculopathy. Presented at The Macula Society Meeting. Miami; 1982.Google Scholar
  60. Yannuzzi LA, Sorenson J, Spaide RF, et al. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10:1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Yannuzzi LA, Negrão S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina. 2001;21:416–34.PubMedCrossRefGoogle Scholar
  62. Yannuzzi LA, Freund KB, Takahashi BS. Review of retinal angiomatous proliferation or type 3 neovascularization. Retina. 2008;28:375–84.PubMedCrossRefGoogle Scholar
  63. Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y. Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology. 2010;117:303–12.e1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of OphthalmologyCentre Hospitalier Intercommunal de Créteil, Université de Paris Est CréteilCréteilFrance

Personalised recommendations