Biogenic Nanomaterials: Synthesis and Its Applications for Sustainable Development

  • Nitin Kumar
  • Abarna Balamurugan
  • Purushothaman Balakrishnan
  • Kanchan Vishwakarma
  • Kumaran ShanmugamEmail author


Nanotechnology is a promising technology in sensing and preventing pollution due to its nanosized materials and augmenting agricultural production by detecting microbes, humidity, and toxic pollutants. Photocatalysis is an incredible process in nanotechnology to degrade organic pesticides and industrial pollutants into nontoxic and beneficiary product. Nanotechnology jumps into the agricultural fields from the lab, achieving the milestone continuously in different ways. In the present chapter, focus has been given on nanoparticle synthesis and its deployment for sustainable development.


Biogenic nanoparticles Sustainable developement Green synthesis Agriculture 


  1. Abdelmalek GAM, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for Citrus phytopathogenic fungi. J Nanomed Res 3(5):00065Google Scholar
  2. Ahmed M, Qadeer U, Aslam MA (2011) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607Google Scholar
  3. Akbarzadeh A, Zare D, Farhangi A, Mehrabi MR, Norouzian D (2009) Synthesis and characterization of gold nanoparticles by Tryptophane. Am J Appl Sci 6:691–695CrossRefGoogle Scholar
  4. Akhlaghi SP, Peng B, Yao Z, Tam KC (2013) Sustainable nanomaterials derived from polysaccharides and amphiphilic compounds. Soft Matter 9(33):7905–7918CrossRefGoogle Scholar
  5. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602CrossRefGoogle Scholar
  6. Andjelkovic I, Azari S, Erkelens M, Forward P, Lambert MF, Losic D (2017) Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for the removal of arsenic from water. RSC Adv 7:3941–3948CrossRefGoogle Scholar
  7. Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nano-materials. Arab J Chem:1–23Google Scholar
  8. Arias JL, Fernandez MS, Dennis JE, Caplan AI (1991) Collagens of the chicken eggshell membranes. Connect Tissue Res 26(1–2):37–45CrossRefPubMedPubMedCentralGoogle Scholar
  9. Armendariz V, Herrera I, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in Nanobiotechnology. J Nanopart Res 6(4):377–382CrossRefGoogle Scholar
  10. Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. John Wiley & SonsGoogle Scholar
  12. Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhawana P, Fulekar M (2012) Nanotechnology: remediation technologies to clean up the environmental pollutants. Res J Chem Sci ISSN 2231:606XGoogle Scholar
  14. Bogireddy NKR, Kumar Kiran HA, Mandal BK (2016) Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J Environ Chem Eng 4:56–64CrossRefGoogle Scholar
  15. Boury B, Plumejeau S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17(1):72–88CrossRefGoogle Scholar
  16. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:229–235CrossRefGoogle Scholar
  17. Cai F, Li J, Suna J, Jia Y (2011) Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chem Eng J 175:70–75CrossRefGoogle Scholar
  18. Cao D, Jin X, Gan L, Wang T, Chen Z (2016) Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere 159:23–31CrossRefPubMedPubMedCentralGoogle Scholar
  19. Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7(3):109–116CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chand K, Abro MI, Aftab U, Shah AH, Lakhan MN, Cao D, Mohamed AMA (2019) Green synthesis characterization and antimicrobial activity against Staphylococcus aureus of silver nanoparticles using extracts of neem, onion and tomato. RSC Adv 9(30):17002–17015CrossRefGoogle Scholar
  21. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594CrossRefGoogle Scholar
  22. Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7(2):64–82CrossRefGoogle Scholar
  23. Chipasa KB (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manag 23:135–143CrossRefPubMedGoogle Scholar
  24. Choi MH, Jeong SW, Shim HE, Yun SJ, Mushtaq S, Choi DS, Jang BS, Yang JE, Choi YJ, Jeon J (2017) Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem Commun 53:3937–3940CrossRefGoogle Scholar
  25. Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp strain ID17 a thermophilic bacterium isolated from Deception Island. Antarctica Microbial Cell Fact 12(1):75CrossRefGoogle Scholar
  26. Cui H, Zhang P, Gu W, Jiang J (2009) Application of anatase TiO 2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. Nanotech Conf Expo:286–289Google Scholar
  27. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A et al (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552CrossRefPubMedGoogle Scholar
  28. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  29. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedPubMedCentralGoogle Scholar
  30. De Corte S, Hennebel T, Fitts JP, Sabbe T, Bliznuk V, Verschuere S, van der Lelie D, Verstraete W, Boon N (2011) Biosupported bimetallic Pd–au nanocatalysts for dechlorination of environmental contaminants. Environ Sci Technol 45:8506–8513CrossRefGoogle Scholar
  31. de Lima R, Seabra AB, Duran N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32(11):867–879CrossRefGoogle Scholar
  32. Debs KB, Cardona DS, da Silva HD, Nassar NN, Carrilho EN, Haddad PS, Labuto G (2019) Oil spill cleanup employing magnetite nanoparticles and yeast-based magnetic bionanocomposite. J Environ Manag 230:405–412CrossRefGoogle Scholar
  33. Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin/Heidelberg, pp 17–35CrossRefGoogle Scholar
  34. Devi PS, Banerjee S, Chowdhury SR, Kumar GS (2012) Eggshell membrane: a natural bio template to synthesize fluorescent gold nanoparticles. RSC Adv 2(30):11578–11585CrossRefGoogle Scholar
  35. Devi TB, Begum S, Ahmaruzzaman M (2016) Photo-catalytic activity of Plasmonic ag@ AgCl nanoparticles (synthesized via a green route) for the effective degradation of Victoria blue B from aqueous phase. J Photochem Photobiol B Biol 160:260–270CrossRefGoogle Scholar
  36. Devi GK, Suruthi P, Veerakumar R, Vinoth S, Subbaiya R, Chozhavendhan S (2019) A review on metallic gold and silver nanoparticles. Res J Pharm Technol 12(2):935–943CrossRefGoogle Scholar
  37. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393(6681):152–155CrossRefGoogle Scholar
  38. Douglas T, Strable E, Willits D, Aitouchen A, Libera M et al (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14(6):415–418CrossRefGoogle Scholar
  39. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792CrossRefGoogle Scholar
  40. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45(7):1065–1071CrossRefGoogle Scholar
  41. Durán N, Seabra AB (2012a) Microbial syntheses of metallic sulphide nanoparticles: an overview. Curr Biotechnol 1:287–296CrossRefGoogle Scholar
  42. Durán N, Seabra AB (2012b) Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl Microbiol Biotechnol 95:275–288CrossRefGoogle Scholar
  43. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 369(1–3):27–33CrossRefGoogle Scholar
  44. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng 13:84bCrossRefGoogle Scholar
  45. Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMT, Lemgruber L, Sant'Anna C (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 6(12):9893–9904CrossRefGoogle Scholar
  46. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interf Sci:189:1–189:18920Google Scholar
  47. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6CrossRefGoogle Scholar
  48. Fawe A, Menzies JG, Chérif M, Bélanger RR (2001) Silicon and disease resistance in dicotyledons Stud. Plant Sci 8:159–169CrossRefGoogle Scholar
  49. Fernández-Acero FJ, Jorge I, Calvo E, Vallejo I, Carbú M, Camafeita E, Garrido C, López JA, Jorrin J, Cantoral JM (2007) Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Arch Microbiol 187:207–215CrossRefGoogle Scholar
  50. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41(2):461–466CrossRefPubMedPubMedCentralGoogle Scholar
  51. Fitton JH, Irhimeh M, Falk N (2007) Macroalgal fucoidan extracts: a new opportunity for marine cosmetics. Cosmet Toiletr 122:55–64Google Scholar
  52. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2010) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62(6):2001–2011CrossRefPubMedPubMedCentralGoogle Scholar
  53. Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45:1763–1773CrossRefGoogle Scholar
  54. Furgal KM, Meyer RL, Bester K (2015) Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136:321–326CrossRefGoogle Scholar
  55. Gautam PK, Gautam RK, Banerjee S, Lofrano G, Sanroman MA, Chattopadhyaya MC, Pandey JD (2015) Preparation of activated carbon from Alligator weed(Alternanthera philoxeroides) and its application for tartrazine removal: isotherm, kinetics and spectroscopic analysis. J Environ Chem Eng 3:2560–2568CrossRefGoogle Scholar
  56. Gawande K, Jenkins-Smith H (2001) Nuclear waste transport and residential property values: estimating the effects of perceived risks. J Environ Econ Manag 42:207–233CrossRefGoogle Scholar
  57. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803CrossRefGoogle Scholar
  58. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408(6808):67–69CrossRefGoogle Scholar
  59. Gomathy M, Sabarinathan KG (2010) Microbial mechanisms of heavy metal tolerance –a review. Agric Rev 31(2):133–138Google Scholar
  60. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014Google Scholar
  61. Gusseme BD, Soetaert M, Hennebel T, Vanhaecke L, Boon N, Verstraete W (2012) Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell. Microbial Biotechnol 5:396–402CrossRefGoogle Scholar
  62. Hajiboland R, Cherghvareh L, Dashtebani F (2016) Effect of silicon supplementation on wheat plants under salt stress. J Plant Proc Func 5:1–12Google Scholar
  63. Hakim LF, Portman JL, Casper MD, Weimer AW (2005) Aggregation behavior of nanoparticles in fluidized beds. Powder Technol 160(3):149–160CrossRefGoogle Scholar
  64. Hameed A, Sheikh MA, Jamil A, Basra SMA (2013) Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci 11:19–24Google Scholar
  65. Handley-Sidhu S, Renshaw J, Moriyama S, Stolpe B, Mennan C, Bagheriasl S, Yong P, Stamboulis A, Paterson-Beedle M, Sasaki K (2011) Uptake of Sr2+ and Co2+ into biogenic hydroxyapatite: implications for biomineral ion exchange synthesis. Environ Sci Technol 45:6985–6990CrossRefGoogle Scholar
  66. Handley-Sidhu S, Hriljac J, Cuthbert M, Renshaw J, Pattrick R, Charnock J, Stolpe B, Lead J, Baker S, Macaskie L (2014) Bacterially produced calcium phosphate nanobiominerals: sorption capacity, site preferences, and stability of captured radionuclides. Environ Sci Technol 48:6891–6898CrossRefGoogle Scholar
  67. Hashem FA, Medany MA, Abd El-Moniem EM, Abdallah MMF (2011) Influence of green-house cover on potential evapotranspiration and cucumber water requirements. Ann Agric Sci 56:49–55CrossRefGoogle Scholar
  68. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L, plants. Soil Sci Plant Nutr 56:244–253CrossRefGoogle Scholar
  69. Hassan SED, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sc 11(3):262–270CrossRefGoogle Scholar
  70. Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008) Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr 31(8):1482–1495CrossRefGoogle Scholar
  71. He F, Zhao D (2007) Manipulating the size and dispensability of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221CrossRefPubMedPubMedCentralGoogle Scholar
  72. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of FePd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34CrossRefGoogle Scholar
  73. He F, Liu J, Roberts CB, Zhao D (2009) One-step “green” synthesis of Pd nanoparticles of controlled size and their catalytic activity for trichloroethene hydro dechlorination. Ind Eng Chem Res 48(14):6550–6557CrossRefGoogle Scholar
  74. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hinds S, Taft BJ, Levina L, Sukhovatkin V, Dooley CJ, Roy MD et al (2006) Nucleotide directed growth of semiconductor nanocrystals. J Am Chem Soc 128(1):64CrossRefPubMedPubMedCentralGoogle Scholar
  76. Honary S, Gharaei-Fathabad E, Paji ZK, Eslamifar M (2012) A novel biological synthesis of gold nanoparticle by Enterobacteriaceae family. Trop J Pharm Res 11(6):887–891Google Scholar
  77. Hu C, Lan YQ, Qu JH, Hu XX, Wang AM (2006) Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dyes and bacteria. J Phys Chem B 110(9):4066–4072CrossRefPubMedPubMedCentralGoogle Scholar
  78. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804CrossRefPubMedPubMedCentralGoogle Scholar
  79. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int 2013Google Scholar
  80. Issazade K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh J (2013) Heavy metals resistance by bacterial strains. Ann Biol Res 4(2):60–63Google Scholar
  81. Jain R, Jordan N, Schild D, Van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PN (2015) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863CrossRefGoogle Scholar
  82. Jayarambabu N, Kumari SB, Rao VK, Prabhu YT (2016) Enhancement of growth in maize by biogenic- synthesized MgO nanoparticles. Int J Pure Appl Zool 4(3):262–270Google Scholar
  83. Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin T-S (2014) Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem 11(2):247–255CrossRefGoogle Scholar
  84. Kandasamy R (2017) A novel single step synthesis and surface functionalization of iron-oxide magnetic nanoparticles and thereof for the copper removal from pigment industry effluent. Separ Purif Technol 188:458–467CrossRefGoogle Scholar
  85. Katata-Seru L, Moremedi T, Aremu OS, Bahadur I (2017) Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq 256:296–304CrossRefGoogle Scholar
  86. Khan ZUH, Khan A, Shah A, Wan P, Chen Y, Khan GM, Khan AU, Tahir K, Muhammad N, Khan HU (2016) Enhanced photocatalytic and electrocatalytic applications of green synthesized silver nanoparticles. J Mol Liq 220:248–257CrossRefGoogle Scholar
  87. Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24Google Scholar
  88. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in south Korean surface, drinking, and waste waters. Water Res 41:1013–1021CrossRefPubMedPubMedCentralGoogle Scholar
  89. Kim H, Mosaddik A, Gyawali R, Ahn KS, Cho SK (2012) Induction of apoptosis by ethanolic extract of mango peel and comparative analysis of the chemical constitutes of mango peel and flesh. Food Chem 133(2):416–422CrossRefPubMedGoogle Scholar
  90. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY (2014) Lee IJ silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33(2):137–149CrossRefGoogle Scholar
  91. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. PNAS 96(24):13611–13614CrossRefPubMedGoogle Scholar
  92. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100CrossRefGoogle Scholar
  93. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035CrossRefGoogle Scholar
  94. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 90:173–176CrossRefPubMedGoogle Scholar
  95. Kumar P, Selvi SS, Govindaraju M (2013) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 3(6):495–500CrossRefGoogle Scholar
  96. Kumar KS, Kumar G, Prokhorov E, Sanchez IC (2014) Exploitation of anaerobic enriched mixed bacteria (AEMB) for the silver and gold nanoparticles synthesis. Colloids Surf A Physicochem Eng Asp 462:264–270CrossRefGoogle Scholar
  97. Kumar N, Tripathi P, Nara S (2017a) Gold nanomaterials to plants: impact of bioavailability, particle size and surface coating. In: Nanomaterials in plants, algae and micro-organism: concepts and controversies. Elsevier Press, London, pp 195–220Google Scholar
  98. Kumar VS, Menon S, Agarwal H, Gopalakrishnan D (2017b) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Effic Technol: 1–6Google Scholar
  99. Kumar N, Sharma S, Nara S (2018) Dual gold nanostructure-based electrochemical immunosensor for CA125 detection. Appl Nanosci 8(7):1843–1853CrossRefGoogle Scholar
  100. Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis of gold nanoparticles using croton caudatus geisel leaf extract and their biological studies. Mater Lett 236:19–22CrossRefGoogle Scholar
  101. Lapworth D, Baran N, Stuart M, Ward R (2012) Emerging organic contaminants in groundwater: a review of sources and fate and occurrence. Environ Pollut 163:287–303CrossRefPubMedGoogle Scholar
  102. Lee S, Sohn E, Hamayun M, Yoon J, Lee I (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agro for Syst 80(3):333–340CrossRefGoogle Scholar
  103. Li Z, Du Y (2003) Biomimic synthesis of CdS nanoparticles with enhanced luminescence. Mater Lett 57(16–17):2480–2484CrossRefGoogle Scholar
  104. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L extract. Green Chem 9(8):852–858CrossRefGoogle Scholar
  105. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695CrossRefPubMedPubMedCentralGoogle Scholar
  106. Lingamdinne LP, Chang YY, Yang JK, Singh J, Choi EH, Shiratani Koduru JR, Attri P (2017) Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J 307(74–84)Google Scholar
  107. Liu FK, Ko FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatogr A1062(1):139–145CrossRefGoogle Scholar
  108. Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31CrossRefGoogle Scholar
  109. Luo P, Liu Y, Xia Y, Xu H, Xie G (2014) Aptamer biosensor for sensitive detection of toxin a of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217–221CrossRefGoogle Scholar
  110. Ma X, Jiang T, Han B, Zhang J, Miao S, Ding K, An G, Xie Y, Zhou Y, Zhu A (2008) Palladium nanoparticles in polyethylene glycols: efficient and recyclable catalyst system for hydrogenation of olefins. Catal Commun 9(1):70–74CrossRefGoogle Scholar
  111. Macaskie LE, Yong P, Doyle TC, Roig MG, Diaz M, Manzano T (1997) Bioremediation of uranium-bearing wastewater: biochemical and chemical factors influencing bioprocess application. Biotechnol Bioeng 53:100–109CrossRefPubMedPubMedCentralGoogle Scholar
  112. Madhumitha G, Rajakumar G, Roopan SM, Rahuman AA, Priya KM, Saral AM, Kamaraj C (2012) Acaricidal, insecticidal, and larvicidal efficacy of fruit peel aqueous extract of Annona squamosa and its compounds against blood-feeding parasites. Parasitol Res 111(5):2189–2199CrossRefPubMedPubMedCentralGoogle Scholar
  113. Mahdavi M, Namvar F, Ahmad M, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964CrossRefPubMedPubMedCentralGoogle Scholar
  114. Malarkodi C, Rajeshkumar S, Paulkumar K, Jobitha GG, Vanaja M (2013) Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv Nano Res 1(2):83–91CrossRefGoogle Scholar
  115. Malik B, Pirzadah TB, Kumar M, Rehman RU (2017) Biosynthesis of nanoparticles and their application in pharmaceutical industry. In: Metabolic engineering for bioactive compounds. Springer, Singapore, pp 331–349CrossRefGoogle Scholar
  116. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J et al (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S A 100:6946–6951CrossRefPubMedPubMedCentralGoogle Scholar
  117. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7(3):274–282Google Scholar
  118. Martins M, Mourato C, Sanches S, Noronha JP, Crespo MB, Pereira IA (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168CrossRefGoogle Scholar
  119. Massironi A, Morelli A, Grassi L, Puppi D, Braccini S, Maisetta G, Chiellini F (2019) Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydr Polym 203:310–321CrossRefPubMedPubMedCentralGoogle Scholar
  120. Minaeian S, Shahverdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci I A U 17(66):1–4Google Scholar
  121. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26CrossRefGoogle Scholar
  122. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Bio fabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881CrossRefPubMedPubMedCentralGoogle Scholar
  123. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar
  124. Moonjung C, Kyoung-Hwan S, Jyongsik J (2010) Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light. J Colloid Interface Sci 341:83–87CrossRefGoogle Scholar
  125. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  126. Mukherjee D, Ghosh S, Majumdar S, Annapurna K (2016) Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J Environ Chem Eng 4:639–650CrossRefGoogle Scholar
  127. Nadaf NY, Kanase SS (2016) Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab J Chem.
  128. Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8(9):2762–2767CrossRefPubMedPubMedCentralGoogle Scholar
  129. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  130. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  131. Narayanan KB, Sakthivel N (2011) Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus. Lour Mater Res Bull 46(10):1708–1713CrossRefGoogle Scholar
  132. Navrotsky (2000) A nanomaterials in the environment, agriculture, and technology (NEAT). J Nanopart 2:321–323CrossRefGoogle Scholar
  133. Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353CrossRefGoogle Scholar
  134. Osterloh FE, Hiramatsu H, Dumas RK, Liu K (2005) Fe3O4-LiMo3Se3 nanoparticle clusters as superparamagnetic nanocompasses. Langmuir 21(21):9709–9713CrossRefGoogle Scholar
  135. Pacioni NL, Borsarelli CD, Rey V, Veglia AV (2015) Synthetic routes for the preparation of silver nanoparticles. Springer, Cham, pp 13–46Google Scholar
  136. Paixão RM, Reck IM, Bergamasco R, Vieira MF, Vieira AMS (2017) Activated carbon of Babassu coconut impregnated with copper nanoparticles by green synthesis for the removal of nitrate in aqueous solution. Environ Technol 3:1–10Google Scholar
  137. Paknikar KM, Nagpal V, Pethkar AV et al (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374CrossRefGoogle Scholar
  138. Parashar UK, Saxena PS, Srivastava A (2009) Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Bios 4:159–166Google Scholar
  139. Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978CrossRefGoogle Scholar
  140. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefGoogle Scholar
  141. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164CrossRefGoogle Scholar
  142. Philip D (2009) Biosynthesis of au, ag and au–ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381CrossRefGoogle Scholar
  143. Pimentel D (2009) Pesticide and pest control. In: Peshin P, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, Netherlands, pp 83–87CrossRefGoogle Scholar
  144. Prasad T, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad T, Sajanlal P, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  145. Qu Y, Pei X, Shen W, Zhang X, Wang J, Zhang Z, Li S, You S, Ma F, Zhou J (2017) Biosynthesis of gold nanoparticles by aspergillum sp WL-au for degradation of aromatic pollutants. Phys E Low-dimens Syst Nanostruct 88:133–141CrossRefGoogle Scholar
  146. Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545Google Scholar
  147. Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462:166–175CrossRefGoogle Scholar
  148. Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73CrossRefGoogle Scholar
  149. Rong C, Jiliang W, Hui L, Gang C, Zhong L, Chi-Ming C (2010) Fabrication of gold nanoparticles with different morphologies in HEPES buffer. Rare Metals 29:180–186CrossRefGoogle Scholar
  150. Sadighi A, Ostad SN, Rezayat SM, Foroutan M, Faramarzi MA, Dorkoosh FA (2012) Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer. Int J Pharm 422:479–488CrossRefGoogle Scholar
  151. Sahin U, Kuslu Y, Kiziloglu FM (2015) Response of cucumber to different irrigation regimes applied through drip-irrigation system. J Anim Plant Sci 25(1):198–205Google Scholar
  152. Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternate. Bioprocess Biosyst Eng 35(4):637–643CrossRefGoogle Scholar
  153. Sathishkumar M, Sneha K, Won S, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of Nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73:332–338CrossRefGoogle Scholar
  154. Schlorf T, Meincke M, Kossel E, Glüer CC, Jansen O, Mentlein R (2011) Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int J Mol Sci 12:12–23CrossRefGoogle Scholar
  155. Seabra AB, Duran N (2010) Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem 20:1624–1637CrossRefGoogle Scholar
  156. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266CrossRefGoogle Scholar
  157. Shen W, Qu Y, Pei X, Li S, You S, Wang J, Zhang Z, Zhou J (2017) Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp WL-au. J Hazard Mater 321:299–306CrossRefGoogle Scholar
  158. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256CrossRefGoogle Scholar
  159. Sheny D, Mathew J, Philip D (2011) Phytosynthesis of au, ag and au–ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79(1):254–262CrossRefGoogle Scholar
  160. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112CrossRefGoogle Scholar
  161. Shibata H, Iimuro M, Uchiya N, Kawamori T, Nagaoka M et al (2003) Preventive effects of Cladosiphon fucoidan against helicobacter pylori infection in Mongolian gerbils. Helicobactor 8:59–65CrossRefGoogle Scholar
  162. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807CrossRefGoogle Scholar
  163. Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organic. J Membr Sci 379:131–137CrossRefGoogle Scholar
  164. Soisuwan S, Warisnoicharoen W, Lirdprapamongkol K, Svasti J (2010) Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci 7(8):1038–1048CrossRefGoogle Scholar
  165. Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34(1):71–82CrossRefGoogle Scholar
  166. Srivastava V, Sharma Y, Sillanpää M (2015) Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater. Ceram Int 41:6702–6709Google Scholar
  167. Stalin Dhas T, Ganesh Kumar V, Abraham LS, Karthick V, Govindaraju K (2012) Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 99:97–101CrossRefGoogle Scholar
  168. Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotech 10(3):230–233CrossRefGoogle Scholar
  169. Stubbs D, Gilman P (2007) Nanotechnology applications in environmental health: big plans for little particles. Oak Ridge Centre for Advanced StudiesGoogle Scholar
  170. Suganya KSU, Govindaraju K, Kumar VG (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C47:351–356CrossRefGoogle Scholar
  171. Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus a novel source in the benign synthesis. Glob J Med Res 12:43–49Google Scholar
  172. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147CrossRefPubMedPubMedCentralGoogle Scholar
  173. Teruya T, Konishi T, Uechi S, Tamaki H, Tako M (2007) Anti-proliferative activity of over sulfated fucoidan from commercially cultured Cladosiphon okamuranus TOKIDA in U937 cells. Inter J Biol Macromol 41:221–226CrossRefGoogle Scholar
  174. Torabi F, Majd A, Enteshari S (2015) The effect of silicon on alleviation of salt stress in borage (Borago officinalis L) soil. Sci Plant Nutr 61:788–798CrossRefGoogle Scholar
  175. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300CrossRefPubMedPubMedCentralGoogle Scholar
  176. Tu J, Yang Z, Hu C, Qu J (2014) Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation. J Environ Sci 26:1154–1161CrossRefGoogle Scholar
  177. Vanaamudan A, Soni H, Sudhakar PP (2016) Palm shell extract capped silver nanoparticles—as efficient catalysts for degradation of dyes and as SERS substrates. J Mol Liq 215:787–794CrossRefGoogle Scholar
  178. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N et al (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113–120CrossRefGoogle Scholar
  179. Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA (2014) Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng 37(8):1591–1597CrossRefGoogle Scholar
  180. Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2(5):837–846CrossRefGoogle Scholar
  181. Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Sharma S (2017) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae and microorganism: concepts and controversies. Elsevier Press, London, pp 473–500Google Scholar
  182. Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS (2017) Contrasting effects of engineered carbon nanotubes on plants: a review. Environ Geochem Health 39:1421–1439CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wang Z, Tang L, Tan LH, Li J, Lu Y (2012) Discovery of the DNA “genetic code” for a biological gold nanoparticle morphologies. Angew Chem Int Ed 51:9078–9082CrossRefGoogle Scholar
  184. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419CrossRefGoogle Scholar
  185. Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017) Biogenic manganese oxides generated by green algae Desmodesmus sp WR1 to improve bisphenol a removal. J Hazard Mater 339:310–319CrossRefPubMedPubMedCentralGoogle Scholar
  186. Wang X, Zhang D, Qian H, Liang Y, Pan X, Gadd GM (2018) Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated ground water. Sci Total Environ 613:672–678CrossRefPubMedPubMedCentralGoogle Scholar
  187. Weng X, Huang L, Chen Z, Megharaj M, Naidu R (2013) Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crop Prod 51:342–347CrossRefGoogle Scholar
  188. Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341:508–513CrossRefGoogle Scholar
  189. Xiao Z, Yuan M, Yang B, Liu Z, Huang J, Sun D (2016) Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal investigation of the leading biomolecules. Chemosphere 150:357–364CrossRefPubMedGoogle Scholar
  190. Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Zhang C (2014) Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98(14):6409–6418CrossRefPubMedGoogle Scholar
  191. Xu H, Wang L, Su H, Gu L, Han T, Meng F, Liu C (2015) Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys 10:12–18CrossRefGoogle Scholar
  192. Xu H, Quan X, Xiao Z, Chen L (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547CrossRefGoogle Scholar
  193. Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighbouring countries: a comprehensive review of India. Sci Total Environ 511:123–137CrossRefPubMedGoogle Scholar
  194. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phyto synthesis of stable au, ag and au-ag alloy nanoparticles using J sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243CrossRefGoogle Scholar
  195. Yang JW, Yoon SY, Oh SJ, Kim SK, Kang KW (2006) Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem Biophys Res Commun 346:345–350CrossRefPubMedGoogle Scholar
  196. Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yang P, Lipowsky R, Dimova R (2009) Nanoparticle formation in giant vesicles: synthesis in biomimetic compartments. Small 5:2033CrossRefPubMedGoogle Scholar
  198. Yang N, WeiHong L, Hao L (2014) Biosynthesis of au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater 134:67–70Google Scholar
  199. Yasmeen F, Raja NI, Razzaq A, Komatsu S (2017) Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim Biophys Acta Protein Proteomics 1865:28–42CrossRefGoogle Scholar
  200. Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107CrossRefGoogle Scholar
  201. Yong P, Macaskie L, Sammons R, Marquis P (2004) Synthesis of nanophase hydroxyapatite by a Serratia sp from waste-water containing inorganic phosphate. Biotechnol Lett 26:1723–1730CrossRefGoogle Scholar
  202. Zaheer Z, Aazam ES, Kosa SA (2016) Effects of cationic and anionic micelles on the morphology of biogenic silver nanoparticles, and their catalytic activity for Congo red. J Mol Liq 220:364–369CrossRefGoogle Scholar
  203. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  204. Zhang X, Yan S, Tyagu RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494CrossRefGoogle Scholar
  205. Zhang Y, Wu B, Xu H, Liu H, Wang M, He Y, Pan B (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3:22–39CrossRefGoogle Scholar
  206. Zheng L, Brody JP, Burke PJ (2004) Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens Bioelectron 20:606–619CrossRefGoogle Scholar
  207. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91CrossRefGoogle Scholar
  208. Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic manganese oxide: generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139CrossRefGoogle Scholar
  209. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2018) Green synthesis and characterization of Dy2Ce2O7 ceramic nanostructures with good photocatalytic properties under visible light for removal of organic dyes in water. J Clean Prod 192:678–687CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nitin Kumar
    • 1
  • Abarna Balamurugan
    • 1
  • Purushothaman Balakrishnan
    • 1
  • Kanchan Vishwakarma
    • 2
  • Kumaran Shanmugam
    • 1
    Email author
  1. 1.Department of BiotechnologyPeriyar Maniammai Institute of Science & TechnologyThanjavurIndia
  2. 2.Amity Institute of Microbial Technology, Amity UniversityNoidaIndia

Personalised recommendations