Advertisement

Role of Nanotechnology in the Management of Agricultural Pests

  • Nidhi Shukla
  • Keshav Meghvanshi
  • Jayendra Nath ShuklaEmail author
Chapter
  • 52 Downloads

Abstract

The continuous use of pesticide-mediated insect control has led to the rise in insecticide resistance cases. It has now become a global problem and a matter of serious concern. Therefore, more reliable and advanced methods are urgently required for the control of insect/pests. Nanotechnology, an interdisciplinary field, has revolutionized different sectors of science and technology by introducing nanoparticles. Nanoparticles can be utilized for enhancing the efficacy of insecticides and pesticides in reduced doses. The use of nanotechnology in agriculture is less frequent compared to sectors like medicine and pharmacy. In this chapter, we give a gist of traditional insect/pest control strategies and discuss the potential of nanotechnology as a new tool for insect control.

Keywords

Nanoparticles Nanotechnology Pesticides Nanopesticides Pests 

References

  1. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1)Google Scholar
  2. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15CrossRefGoogle Scholar
  3. Barik TK, Sahu B, Swain V (2008) Nanosilica – From medicine to pest control. Parasitol Res 103(2):253–258CrossRefGoogle Scholar
  4. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A et al (2018) Mosquito control with green nanopesticides: towards the one health approach? A review of non-target effects. Environ Sci Pollut Res 25(11):10184–10206CrossRefGoogle Scholar
  5. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles - A recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  6. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71CrossRefGoogle Scholar
  7. Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic Biochem Physiol 149:26–36CrossRefGoogle Scholar
  8. Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4(10):945–949Google Scholar
  9. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105CrossRefGoogle Scholar
  10. Dhaliwal GS, Koul O, Arora R (2004) Integrated pest management: retrospect and prospect. Integrated Pest Management: Potential, Constraints ChallengesGoogle Scholar
  11. Dhoke SK, Mahajan P, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7Google Scholar
  12. Dimetry NZ, Hussein HM (2016) Role of nanotechnology in agriculture with special reference to pest control. Int J Pharm Tech Res 9(10):121–144Google Scholar
  13. Divya K, Sankar M (2009) Entomopathogenic nematodes in pest management. Indian J Sci Technol 2(7):53–60Google Scholar
  14. Dunn DW, Follett PA (2017) The sterile insect technique (SIT) – an introduction. Entomol Exp Appl 163(3):151–154CrossRefGoogle Scholar
  15. Dziewiecka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40CrossRefGoogle Scholar
  16. Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, Mertig M, Born R, Heinemann S, Hanke T et al (2008) Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites. J Nanomater 2008:1–8Google Scholar
  17. Esquivel DMS (2007) Magnetic nanoparticles in social insects: are they the geomagnetic sensors? Entomological Society of America. Annual Meeting. Monday, December 10, 2007 NO-0574Google Scholar
  18. Foldbjerg R, Jiang X, Micləuş T, Chen C, Autrup H, Beer C (2015) Silver nanoparticles – wolves in sheep’s clothing? Toxicol Res (Camb) 4(3):563–575CrossRefGoogle Scholar
  19. Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46(3):558–567CrossRefGoogle Scholar
  20. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242(3):326–332CrossRefGoogle Scholar
  21. Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56CrossRefGoogle Scholar
  22. Gangemi S, Miozzi E, Teodoro M, Briguglio G, De Luca A, Alibrando C, Polito I, Libra M (2016) Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (review). Mol Med Rep 14(5):4475–4488CrossRefPubMedPubMedCentralGoogle Scholar
  23. García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF (2016) Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 145:274–283CrossRefGoogle Scholar
  24. Gorb EV, Gorb SN (2009) Contact mechanics at the insect-plant interface: how do insects stick and how do plants prevent this? Borodich FM (ed.), IUTAM Symposium on scaling in solid mechanics, IUTAM Bookseries, Springer Science and Business Media B.V. pp 243Google Scholar
  25. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92(2):83–91CrossRefGoogle Scholar
  26. Hawkins NJ, Bass C, Dixon A, Neve P (2019) The evolutionary origins of pesticide resistance. Biol Rev 94(1):135–155CrossRefGoogle Scholar
  27. Hendrichs J, Robinson A (2009) Chapter 243 – Sterile Insect Technique A2 - Resh, Vincent H. In Encyclopedia of Insects (2nd Ed)Google Scholar
  28. Hokkanen H (1991) Trap cropping in Pest management. Annu Rev Entomol 36(1):119–138CrossRefGoogle Scholar
  29. Johnson DL, Huang HC, Harper AM (1988) Mortality of grasshoppers (Orthoptera: Acrididae) inoculated with a Canadian isolate of the fungus Verticillium lecanii. J Invertebr Pathol 52(2):335–342CrossRefGoogle Scholar
  30. Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45(2):172–175CrossRefGoogle Scholar
  31. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867CrossRefGoogle Scholar
  32. Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541CrossRefGoogle Scholar
  33. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931CrossRefGoogle Scholar
  34. Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62(19):4227–4240CrossRefGoogle Scholar
  35. Le Goff G, Giraudo M (2019) Effects of pesticides on the environment and insecticide resistance. In Olfactory concepts of insect control – alternative to insecticidesGoogle Scholar
  36. Lees RS, Gilles JR, Hendrichs J, Vreysen MJ, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162CrossRefGoogle Scholar
  37. Li F, Gu Z, Wang B, Xie Y, Ma L, Xu K, Ni M, Zhang H, Shen W, Li B (2014) Effects of the biosynthesis and signaling pathway of ecdysterone on Silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. J Chem Ecol 40(8):913–922CrossRefGoogle Scholar
  38. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manag Sci 69(1):104–111CrossRefGoogle Scholar
  39. Liu Y, Laks P, Heiden P (2003) Nanoparticles for the controlled release of fungicides in wood: soil jar studies using G. Trabeum and T. Versicolor wood decay fungi. Holzforschung 57(2):135–139CrossRefGoogle Scholar
  40. Liu X, Vinson D, Abt D, Hurt RH, Rand DM (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mao BH, Chen ZY, Wang YJ, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):1–16CrossRefGoogle Scholar
  42. Mommaerts V, Jodko K, Thomassen LCJ, Martens JA, Kirsch-Volders M, Smagghe G (2012) Assessment of side-effects by Ludox TMA silica nanoparticles following a dietary exposure on the bumblebee Bombus terrestris. Nanotoxicology 6(5):554–561CrossRefGoogle Scholar
  43. Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, Ho RJY (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26(5–6):435–447CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Heal 4Google Scholar
  45. Nikolouli K, Colinet H, Renault D, Enriquez T, Mouton L, Gibert P, Sassu F, Cáceres C, Stauffer C, Pereira R et al (2018) Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J Pest Sci 91(2):489–503CrossRefGoogle Scholar
  46. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537PubMedPubMedCentralGoogle Scholar
  47. Patil CD, Borase HP, Suryawanshi RK, Patil SV (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25CrossRefGoogle Scholar
  48. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M d P, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33CrossRefGoogle Scholar
  49. Philbrook NA, Winn LM, Afrooz ARMN, Saleh NB, Walker VK (2011) The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257(3):429–436CrossRefGoogle Scholar
  50. Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda MV, Desimone MF (2016) Nanotoxicological effects of SiO 2 nanoparticles on Spodoptera frugiperda Sf9 cells. Curr Pharm Biotechnol 17(5):465–470CrossRefGoogle Scholar
  51. Scott MJ, Concha C, Welch JB, Phillips PL, Skoda SR (2017) Review of research advances in the screwworm eradication program over the past 25 years. Entomol Exp Appl 164(3):226–236CrossRefGoogle Scholar
  52. Shah MA, Wani SH (2016) Nanotechnology and insecticidal formulations. J Food Bioeng Nanoprocessing 1(3):285–310Google Scholar
  53. Silva MDS, Cocenza DS, De Melo NFS, Grillo R, Rosa AH, Fraceto LF (2010) Alginate nanoparticles as a controlled release system for clomazone herbicide. Quim Nova 33(9)Google Scholar
  54. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sooresh A, Kwon H, Taylor R, Pietrantonio P, Pine M, Sayes CM (2011) Surface functionalization of silver nanoparticles: novel applications for insect vector control. ACS Appl Mater Interfaces 3(10):3779–3787CrossRefGoogle Scholar
  56. Stadler T, López García GP, Gitto JG, Buteler M (2017) Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bull Insectol 70(1):17–26Google Scholar
  57. Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35(10):926–935CrossRefGoogle Scholar
  58. Thompson JM, Chisholm BJ, Bezbaruah AN (2010) Reductive dechlorination of chloroacetanilide herbicide (Alachlor) using zero-valent iron nanoparticles. Environ Eng Sci 27(3):227–232CrossRefGoogle Scholar
  59. Vincent C, Hallman G, Panneton B, Fleurat-Lessard F (2003) Management of agricultural insects with physical control methods. Annu Rev Entomol 48:261–281CrossRefGoogle Scholar
  60. Weisz R, Smilowitz Z, Christ B (1994) Distance, rotation, and border crops affect Colorado potato beetle (Coleoptera: Chrysomelidae) colonization and population density and early blight (Alternaria solani) severity in rotated potato fields. J Econ Entomol 87(3):723–729CrossRefGoogle Scholar
  61. Wilke ABB, Marrelli MT (2012) Genetic control of mosquitoes: population suppression strategies. Rev Inst Med Trop Sao Paulo 54(5):287–292CrossRefGoogle Scholar
  62. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J AgricFood Chem 11 57(21):10156–10162Google Scholar
  63. Yin Y-h, Guo Q-m, Han Y, Wang L-j, Wan S-q (2012) Preparation, characterization and Nematicidal activity of Lansiumamide B Nano-capsules. J Integr Agric 11(7):1151–1158Google Scholar
  64. Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2(12):1440–1443CrossRefGoogle Scholar
  65. Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JRL (2015) Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS One 10(4):e0121126CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nidhi Shukla
    • 1
  • Keshav Meghvanshi
    • 2
  • Jayendra Nath Shukla
    • 2
    Email author
  1. 1.Department of Biotechnology and BioinformaticsBirla Institute of Scientific ResearchJaipurIndia
  2. 2.Department of Biotechnology, School of Life SciencesCentral University of RajasthanAjmerIndia

Personalised recommendations