Advertisement

Nanoparticles in Plant Growth and Development

Chapter

Abstract

Over time, nanotechnology has enabled a wide range of applications in the agricultural field due to the distinctive properties of nanoparticles, including high surface area, reactivity, agglomeration, penetration capability, size and structure. Nanoparticles have been by far advantageous for plant growth, development and protection. Nanoparticles bestow specificity in pesticide delivery, enhanced nutrient supply, managing pathogenicity, increasing photosynthetic capacity and germination rate. Apart from beneficial impacts on plants, there have been instances of toxicity and bioaccumulation of nanoparticles, which led to a few setbacks. Thus, it is necessary to have a complete knowledge of the positive and negative impacts of nanoparticles and to study all their characteristics in detail. This chapter highlights the impact of nanoparticles on the growth and development of plants.

Keywords

Nano-particles Distinctive properties Impact on plants Bioaccumulation Toxicity Agriculture Nanotechnology Metals Plant growth Uptake and translocation Carbon nanotubes Graphene Fertilizers Phytotoxicity 

References

  1. Adak T, Kumar J, Shakil NA, Walia S (2012 Mar 1) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225PubMedGoogle Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012 Jun 1) Effect of copper oxide nano particle on seed germination of selected crops. J Agri Sci Technol 2(6A):815Google Scholar
  3. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014 May 25) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138Google Scholar
  4. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013 Sep 1) Silver nano-particles in soil–plant systems. J Nanopart Res 15(9):1896Google Scholar
  5. Asli S, Neumann PM (2009 May) Colloidal suspensions of clay or titanium dioxide nano-particles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32(5):577–584PubMedGoogle Scholar
  6. Bang SH, Yu YM, Hwang IC, Park HJ (2009 Dec 1) Formation of size-controlled nano carrier systems by self-assembly. J Microencapsul 26(8):722–733PubMedGoogle Scholar
  7. Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, Limbach LK (2010 Oct 21) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723PubMedGoogle Scholar
  8. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003 Jan 1) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441PubMedGoogle Scholar
  9. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J (2006 Dec) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(1):11PubMedPubMedCentralGoogle Scholar
  10. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009 Feb 1) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62PubMedGoogle Scholar
  11. Brant J, Lecoanet H, Wiesner MR (2005 Oct 1) Aggregation and deposition characteristics of fullerene nano-particles in aqueous systems. J Nanopart Res 7(4–5):545–553Google Scholar
  12. Brayner R (2008 Feb 1) The toxicological impact of nano-particles. Nano Today 3(1–2):48–55Google Scholar
  13. Cabiscol CE, Tamarit SJ, Ros SJ (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8PubMedGoogle Scholar
  14. Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011 Mar 1) Toxicity reduction of polymer-stabilized silver nano-particles by sunlight. J Phys Chem C 115(11):4425–4432Google Scholar
  15. Chinnusamy V, Schumaker K, Zhu JK (2004 Jan 1) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236PubMedPubMedCentralGoogle Scholar
  16. Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A (2010 Oct 4) Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proceed 1276(1):154–157Google Scholar
  17. Crabtree RH (1998 Dec 11) A new type of hydrogen bond. Science 282(5396):2000–2001Google Scholar
  18. Da Costa MV, Sharma PK (2016 Mar 1) Effect of copper oxide nano-particles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54(1):110–119Google Scholar
  19. De Souza MP, Pilon-Smits EA, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. In: Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 171–190Google Scholar
  20. Dietz KJ, Herth S (2011 Nov 1) Plant nanotoxicology. Trends Plant Sci 16(11):582–589PubMedGoogle Scholar
  21. Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Nanotechnology and plant sciences. Springer, Cham, pp. 55–75Google Scholar
  22. Ditta A, Arshad M (2016 Apr 1) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5(2):209–229Google Scholar
  23. Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017 Jan 1) Interaction of metal oxide nano-particles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225PubMedGoogle Scholar
  24. Dubey A, Mishra V, Kumar S, Ahmed SU, Goswami M (2018 Apr 17) Nanotoxicity on human and plant pathogenic microbes and aquatic organisms. In: Environmental toxicity of nanomaterials. CRC Press, Boca Raton, pp 241–280Google Scholar
  25. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005 Jun) Interaction of silver nano-particles with HIV-1. J Nanobiotechnol 3(1):6Google Scholar
  26. Elías AL, Carrero-Sánchez JC, Terrones H, Endo M, Laclette JP, Terrones M (2007 Oct 1) Viability studies of pure carbon-and nitrogen-doped nanotubes with Entamoeba histolytica: from amoebicidal to biocompatible structures. Small 3(10):1723–1729PubMedGoogle Scholar
  27. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010 Oct 1) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11(4):742–748Google Scholar
  28. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL (2005 Jun 1) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39(11):4307–4316PubMedGoogle Scholar
  29. Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, Huang Y, Chen Y, Kolmakov A, Ma X (2012 May 1) Phytotoxicity, accumulation and transport of silver nano-particles by Arabidopsis thaliana. Nanotoxicology 7(3):323–337PubMedGoogle Scholar
  30. Ghodake G, Seo YD, Lee DS (2011 Feb 15) Hazardous phytotoxic nature of cobalt and zinc oxide nano-particles assessed using Allium cepa. J Hazard Mater 186(1):952–955PubMedGoogle Scholar
  31. Ghormade V, Deshpande MV, Paknikar KM (2011 Nov 1) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedGoogle Scholar
  32. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014 Apr) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400PubMedGoogle Scholar
  33. Gopinath K, Gowri S, Karthika V, Arumugam A (2014 Sep 1) Green synthesis of gold nano-particles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4(3):115Google Scholar
  34. Govorov AO, Carmeli I (2007 Mar 14) Hybrid structures composed of photosynthetic system and metal nano-particles: plasmon enhancement effect. Nano Lett 7(3):620–625PubMedGoogle Scholar
  35. Green JM, Beestman GB (2007 Mar 1) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26(3):320–327Google Scholar
  36. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007 Oct 24) Exposure to copper nano-particles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186PubMedGoogle Scholar
  37. Gruère G, Narrod C, Abbott L (2011 Feb) Agricultural, food, and water nanotechnologies for the poor. International Food Policy Research Institute, Washington, DCGoogle Scholar
  38. Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nano-particles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant 1037, 2013 Oct 6, pp 795–800Google Scholar
  39. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6(16):87–90Google Scholar
  40. Hai ZH, Cheng PE, Jian-jun YA, Ji-yan SH (2013 Mar 1) Eco-toxicological effect of metal-based nano-particles on plants: research progress. Yingyong Shengtai Xuebao 24(3)Google Scholar
  41. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014 Apr) Effect of nano-particles on biological contamination of'in vitro’cultures and organogenic regeneration of banana. Aust J Crop Sci 8(4):612Google Scholar
  42. Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL (2013 Oct 5) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46(3):813–822PubMedGoogle Scholar
  43. Hu C, Liu X, Li X, Zhao Y (2014 Jan 1) Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nano-particles and zinc accumulation in plants. Environ Sci Pollut Res 21(1):732–739Google Scholar
  44. Ingle TM, Alexander R, Bouldin J, Buchanan RA (2008 Sep 1) Absorption of semiconductor nanocrystals by the aquatic invertebrate Ceriodaphnia dubia. Bull Environ Contam Toxicol 81(3):249–252PubMedPubMedCentralGoogle Scholar
  45. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007 Dec 1) Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays. Anal Chem 79(23):9091–9097PubMedGoogle Scholar
  46. Jain AK, Kumar Mehra N, Lodhi N, Dubey V, Mishra DK, Jain PK, Jain NK (2007 Jan 1) Carbon nanotubes and their toxicity. Nanotoxicology 1(3):167–197Google Scholar
  47. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55Google Scholar
  48. Kaunisto E, Tajarobi F, Abrahmsen-Alami S, Larsson A, Nilsson B, Axelsson A (2013 Mar 12) Mechanistic modelling of drug release from a polymer matrix using magnetic resonance microimaging. Eur J Pharm Sci 48(4–5):698–708PubMedGoogle Scholar
  49. Kaushik P, Shakil NA, Kumar J, Singh MK, Singh MK, Yadav SK (2013 Aug 3) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48(8):677–685PubMedGoogle Scholar
  50. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012 Feb 29) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135PubMedGoogle Scholar
  51. Kim E, Kim SH, Kim HC, Lee SG, Lee SJ, Jeong SW (2011 Mar 1) Growth inhibition of aquatic plant caused by silver and titanium oxide nano-particles. Toxicol Environ Heal Sci 3(1):1–6Google Scholar
  52. Kreyling WG, Semmler-Behnke M, Möller W (2006 Oct 1) Health implications of nano-particles. J Nanopart Res 8(5):543–562Google Scholar
  53. Krysanov EY, Pavlov DS, Demidova TB, Dgebuadze YY (2010 Aug 1) Effect of nano-particles on aquatic organisms. Biol Bull 37(4):406–412Google Scholar
  54. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010 Mar 10) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302PubMedPubMedCentralGoogle Scholar
  55. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006 Jan 1) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217PubMedGoogle Scholar
  56. Lecoanet HF, Wiesner MR (2004 Aug 15) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38(16):4377–4382PubMedGoogle Scholar
  57. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010 Mar) Developmental phytotoxicity of metal oxide nano-particles to Arabidopsis thaliana. Environ Toxicol Chem Int J 29(3):669–675Google Scholar
  58. Lemire JA, Harrison JJ, Turner RJ (2013 Jun) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371PubMedGoogle Scholar
  59. Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano-SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing Fores Univ (Natural Sciences Edition) 36(4):161–164Google Scholar
  60. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009a Feb 3) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010PubMedGoogle Scholar
  61. Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, Yang Y, Chen Y (2009b Nov 6) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902PubMedGoogle Scholar
  62. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010 Apr 12) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nano-particles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320PubMedPubMedCentralGoogle Scholar
  63. Lovern SB, Klaper R (2006 Apr) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nano-particles. Environ Toxicol Chem Int J 25(4):1132–1137Google Scholar
  64. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006 Jul 15) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366PubMedGoogle Scholar
  65. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010 Jul 15) Interactions between engineered nano-particles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061PubMedGoogle Scholar
  66. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011Google Scholar
  67. Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008 Sep 1) Ultrafine dispersed CuO nano-particles and their antibacterial activity. J Exp Nanosci 3(3):185–193Google Scholar
  68. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–3Google Scholar
  69. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004 Jan 1) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxic Environ Health A 67(1):87–107Google Scholar
  70. Mishra VK, Kumar A (2009 Sep 1) Impact of metal nano-particles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4:587–592Google Scholar
  71. Moraru Carment IN (2003) A new frontier in food science. Carment I. Moraru, Panchapakesan Chithra P., Huand Oingrong et al. Food Technol 57(12):24–29Google Scholar
  72. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005 Aug 26) The bactericidal effect of silver nano-particles. Nanotechnology 16(10):2346PubMedGoogle Scholar
  73. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183PubMedGoogle Scholar
  74. Naderi MR, Danesh-Shahraki A (2013 May 16) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229Google Scholar
  75. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010 Sep 1) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163Google Scholar
  76. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008 Jul 1) Environmental behavior and ecotoxicity of engineered nano-particles to algae, plants, and fungi. Ecotoxicology 17(5):372–386PubMedGoogle Scholar
  77. Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011 Dec 20) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713PubMedGoogle Scholar
  78. Nowack B, Bucheli TD (2007 Nov 1) Occurrence, behavior and effects of nano-particles in the environment. Environ Pollut 150(1):5–22PubMedGoogle Scholar
  79. Nyberg L, Turco RF, Nies L (2008 Feb 14) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42(6):1938–1943PubMedGoogle Scholar
  80. O’Neill MA, Vine GJ, Beezer AE, Bishop AH, Hadgraft J, Labetoulle C, Walker M, Bowler PG (2003 Sep 16) Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study. Int J Pharm 263(1–2):61–68PubMedGoogle Scholar
  81. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006 May 1) Ecotoxicology of carbon-based engineered nano-particles: effects of fullerene (C60) on aquatic organisms. Carbon 44(6):1112–1120Google Scholar
  82. Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011 Aug 1) In vitro biosynthesis and genotoxicity bioassay of silver nano-particles using plants. Toxicol In Vitro 25(5):1097–1105PubMedGoogle Scholar
  83. Pankaj, Shakil NA, Kumar J, Singh MK, Singh K (2012 Jul 1) Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J Environ Sci Health B 47(6):520–528PubMedGoogle Scholar
  84. Pokhrel LR, Dubey B (2013 May 1) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nano-particles. Sci Total Environ 452:321–332PubMedGoogle Scholar
  85. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713Google Scholar
  86. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP (2012 Sep 11) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109(37):E2451–E2456PubMedGoogle Scholar
  87. Rahman A, Seth D, Mukhopadhyaya SK, Brahmachary RL, Ulrichs C, Goswami A (2009 Jan 1) Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1):31–38PubMedGoogle Scholar
  88. Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nano-particles, and their role in antioxidant defense system in plants. In: Nanotechnology and plant sciences. Springer, Cham, pp 1–17Google Scholar
  89. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ (2007 Apr 15) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41(8):3025–3029PubMedGoogle Scholar
  90. Ruffolo SA, La Russa MF, Malagodi M, Rossi CO, Palermo AM, Crisci GM (2010 Sep 1) ZnO and ZnTiO 3 nanopowders for antimicrobial stone coating. Appl Phys A 100(3):829–834Google Scholar
  91. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012 Jun 1) Uptake, distribution and toxicity of gold nano-particles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360PubMedGoogle Scholar
  92. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nano-particles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2(1):2Google Scholar
  93. Service RF (2003 Apr 11) American Chemical Society meeting. Nanomaterials show signs of toxicity. Science (New York, NY) 300(5617):243Google Scholar
  94. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, Nunez JE, Peralta-Videa JR, Gardea-Torresdey JL (2013 Sep 27) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598PubMedGoogle Scholar
  95. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nano-particles, soils, plants and sustainable agriculture. In: Nanoscience in food and agriculture. Springer, Cham, pp 283–312Google Scholar
  96. Shankar SS, Ahmad A, Sastry M (2003 Jan 1) Geranium leaf assisted biosynthesis of silver nano-particles. Biotechnol Prog 19(6):1627–1631PubMedGoogle Scholar
  97. Siddiqui, Manzer H., et al. “Role of nanoparticles in plants.” Nanotechnology and Plant Sciences. Springer, Cham, 2015. 19-35.Google Scholar
  98. Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40Google Scholar
  99. Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A, Kirpichnikov M (2012 Jun 1) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6(2):132–138Google Scholar
  100. Stampoulis D, Sinha SK, White JC (2009 Nov 19) Assay-dependent phytotoxicity of nano-particles to plants. Environ Sci Technol 43(24):9473–9479PubMedGoogle Scholar
  101. Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5(2):463–474PubMedGoogle Scholar
  102. Syu YY, Hung JH, Chen JC, Chuang HW (2014 Oct 1) Impacts of size and shape of silver nano-particles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedGoogle Scholar
  103. Tarafdar JC, Agrawal A, Raliya R, Kumar P, Burman U, Kaul RK (2012a Aug 1) ZnO nano-particles induced synthesis of polysaccharides and phosphatases by Aspergillus fungi. Adv Sci Eng Med 4(4):324–328Google Scholar
  104. Tarafdar JC, Raliya R, Rathore I (2012b Dec 1) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89Google Scholar
  105. Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006 Dec 1) Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40(23):7387–7393PubMedGoogle Scholar
  106. Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Nanotechnology and plant sciences. Springer, Cham, pp 37–53Google Scholar
  107. Torney F, Trewyn BG, Lin VS, Wang K (2007 May) Mesoporous silica nano-particles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295PubMedGoogle Scholar
  108. Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017 Jan 1) An overview on manufactured nano-particles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12PubMedGoogle Scholar
  109. Wang L, Wang Y, Zhou Y, Duan X, Li M, Zhang F (2001) Relationship between nanostructure SiO2 and occurrence of plant fungi. J Huazhong (Central China) Agri Univ 20(6):593–597Google Scholar
  110. Wang S, Kurepa J, Smalle JA (2011 May) Ultra-small TiO2 nano-particles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environand 34(5):811–820Google Scholar
  111. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012 Apr 4) Xylem-and phloem-based transport of CuO nano-particles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441PubMedGoogle Scholar
  112. Wang S, Liu H, Zhang Y, Xin H (2015 Mar) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34(3):554–561PubMedGoogle Scholar
  113. Wang P, Lombi E, Zhao FJ, Kopittke PM (2016a Aug 1) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712PubMedGoogle Scholar
  114. Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b Jan 12) Zinc oxide nano-particles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243PubMedPubMedCentralGoogle Scholar
  115. Xiang C, Taylor AG, Hinestroza JP, Frey MW (2013 Jan 5) Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J Appl Polym Sci 127(1):79–86Google Scholar
  116. Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015 Dec) Assessment of the phytotoxicity of metal oxide nano-particles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12(12):15100–15109PubMedPubMedCentralGoogle Scholar
  117. Yau CP, Wang L, Yu M, Zee SY, Yip WK (2004 Mar 1) Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J Exp Bot 55(397):547–556PubMedGoogle Scholar
  118. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011 Feb 22) More than the ions: the effects of silver nano-particles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367PubMedGoogle Scholar
  119. Zeng F, Hou C, Wu S, Liu X, Tong Z, Yu S (2007 Jan 9) Silver nano-particles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18(5):055605Google Scholar
  120. Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014 Jan 15) Transport of gold nano-particles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lettand 1(2):146–151Google Scholar
  121. Zhang M, Gao B, Chen J, Li Y (2015a Feb 1) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17(2):78Google Scholar
  122. Zhang P, Ma Y, Zhang Z (2015b) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Nanotechnology and plant sciences. Springer, Cham, pp 77–99Google Scholar
  123. Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2012 Dec 20) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Processes Impactsand 15(1):260–266Google Scholar
  124. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013 Nov 23) Influence of CeO2 and ZnO nano-particles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61(49):11945–11951PubMedGoogle Scholar
  125. Zhu Y, Ran T, Li Y, Guo J, Li W (2006 Aug 30) Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnology 17(18):4668PubMedGoogle Scholar
  126. Zhu X, Zhu L, Chen Y, Tian S (2009 Jan 1) Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11(1):67–75Google Scholar
  127. Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR, Rotello VM, Xing B, Vachet RW (2012 Nov 2) Effect of surface charge on the uptake and distribution of gold nano-particles in four plant species. Environ Sci Technol 46(22):12391–12398PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiotechnologyNetaji Subhash Institute of TechnologyNew DelhiIndia

Personalised recommendations