New Insights into Application of Nanoparticles for Plant Growth Promotion: Present and Future Prospects

  • Anmol Gupta
  • Ambreen Bano
  • Smita Rai
  • Neelam PathakEmail author
  • Swati Sharma


Nanotechnology has opened up new avenues in precision and sustainable agriculture by offering more efficient fertilizers and pesticides. The effects of use of these nanomaterials include increased seed germination, length of root-shoot, and biomass of the seedlings along with enhancement of the physiological parameters that enhance nitrogen metabolism and photosynthetic activity in many crop plants. They also provide many other benefits as reducing the amount of chemical used and increasing the absorption of nutrients from the soil, hence reducing the agricultural inputs. Nanotechnology holds the promises controlled release of agrochemicals as well as targeted delivery of several macromolecules. This technology may be used to make nanoscale sensors for monitoring the soil quality as well as nutritional status of agricultural field. Precise and on-demand application of nanopesticides or nanofertilizers can enhance the productivity and prove protection against several pests without harming the environment.


Nanofetilizer Nanoparticles Carrier Nanofomulation Nanobiosensor Nanopeticides 



The authors are grateful to the Department of Science and Technology (DST FIST, DST INSPIRE-IF160803) and Uttar Pradesh Council of Science and Technology for providing financial support.


  1. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  2. Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318CrossRefGoogle Scholar
  3. Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:12CrossRefGoogle Scholar
  4. Anjum NA, Singh N, Singh MK et al (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bahadır EB, Sezgintürk MK (2017) Biosensor technologies for analyses of food contaminants. In: Nanobiosensors. Elsevier, Amsterdam, pp 289–337. ISBN 978-0-12-804301-1CrossRefGoogle Scholar
  6. Bailey-Serres J, Fukao T, Gibbs DJ et al (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64(2):120–127Google Scholar
  8. Beck MB, Villarroel Walker R (2013) On water security, sustainability, and the water-food-energy-climate nexus. Front Environ Sci Eng 7:626–639CrossRefGoogle Scholar
  9. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79e85CrossRefGoogle Scholar
  10. Bhattacharyya A, Datta PS, Chaudhuri P et al (2011) Nanotechnology: a new frontier for food security in socio economic development. In: Proceeding of disaster, risk and vulnerability conference 2011 held at School of Environmental Sciences, Mahatma Gandhi University, India in association with the Applied Geoinformatics for Society and Environment, Germany, pp 12–14Google Scholar
  11. Bhattacharyya A, Duraisamy P, Govindarajan M et al (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319CrossRefGoogle Scholar
  12. Bouwmeester H, Dekkers S, Noordam MY (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52e62CrossRefGoogle Scholar
  13. Burris KP, Stewart CN (2012) Fluorescent nanoparticles: sensing pathogens and toxins in foods and crops. Trends Food Sci Technol 28:143–152CrossRefGoogle Scholar
  14. Cañas JE, Long M, Nations S et al (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem Int J 27(9):1922–1931CrossRefGoogle Scholar
  15. Chaudhari Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595e603Google Scholar
  16. Cherchi C, Gu AZ (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44(21):8302–8307CrossRefPubMedGoogle Scholar
  17. Chidambaram R (2016) Application of rice husk nanosorbents containing 2, 4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326CrossRefGoogle Scholar
  18. Choudhury SR, Ghosh M, Mandal A et al (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90(2):733–743CrossRefPubMedGoogle Scholar
  19. Clark HA, Hoyer M, Philbert MA (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71:4831–4836CrossRefPubMedGoogle Scholar
  20. Donaldson K, Stone V, Tran CL (2004) Nanotoxicology. Occup Environ Med 619:727–728CrossRefGoogle Scholar
  21. El-Shanshoury AERR, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol 2011:1–7CrossRefGoogle Scholar
  22. EPA (2007) Nanotechnology white paper. U.S. Environmental Protection Agency publication, Washington, DC. Available at: Accessed 22 Jan 11
  23. Farrar J, Hawes M, Jones D et al (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837CrossRefGoogle Scholar
  24. Feizi H, Moghaddam PR, Shahtahmassebi N (2012) Impact of bulk and nanosized titanium dioxide (TiO 2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146(1):101–106CrossRefPubMedGoogle Scholar
  25. Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88:576–582CrossRefGoogle Scholar
  26. Flood J (2010) The importance of plant health to food security. Food Sec 2(3):215–231CrossRefGoogle Scholar
  27. García EA, Fernández RG, Días-García ME (2005) Tris(bipyridine)ruthenium(II) doped sol-gel materials for oxygen recognition in organic solvents. Microporous Mesoporous Mater 77:235–239CrossRefGoogle Scholar
  28. Geiser M, Rothen-Rutishauser B, Kapp N et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gheorghe I, Czobor I, Lazar V et al (2017) Present and perspectives in pesticides biosensors development and contribution of nanotechnology. In: New pesticides and soil sensors. Elsevier, Amsterdam, pp 337–372. ISBN 978-0-12-804299-1CrossRefGoogle Scholar
  30. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803CrossRefGoogle Scholar
  31. Gogoi R, Dureja P, Singh PK (2009) Nanoformulations- a safer and effective option for agrochemicals. Indian Farm 59(8):7–12Google Scholar
  32. Grillo R, Pereira AE, Nishisaka CS et al (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171CrossRefGoogle Scholar
  33. Gutiérrez FJ, Mussons ML, Gatón P et al (2011) Nanotechnology and food industry. Scientific, health and social aspects of the food industry. Tech, Croatia Book ChapterGoogle Scholar
  34. Hayles J, Johnson L, Worthley C et al (2017) Nanopesticides: a review of current research and perspectives. In: New pesticides and soil sensors. Elsevier, San Diego, pp 193–225CrossRefGoogle Scholar
  35. Huang J, Li Q, Sun D et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  36. Husu I, Rodio G, Touloupakis E et al (2013) Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sensors Actuators B Chem 185:321–330CrossRefGoogle Scholar
  37. Jackson T, Mansfield K, Saafi M et al (2008) Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41:381–390CrossRefGoogle Scholar
  38. Jaeger CH III, Lindow SE, Miller W et al (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jalali B, Suryanarayana D (1971) Shift in the carbohydrate spectrum of root exudates of wheat in relation to its root-rot disease. Plant Soil 34:261–267CrossRefGoogle Scholar
  40. Jenne M, Kambham M, Tollamadugu NP et al (2018) The use of slow releasing nanoparticle encapsulated Azadirachtin formulations for the management of Caryedon serratus O. (groundnut bruchid). IET Nanobiotechnol 12(7):963–967CrossRefGoogle Scholar
  41. Joseph T, Morrison M (2006) Nanoforum report: nanotechnology in agriculture and food. European Nanotechnology Gateway. Available at: Accessed 18 Apr 14
  42. Kahru A, Dubourguier HL (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105e119Google Scholar
  43. Kalagatur NK, Ghosh N, Sivaraman O (2018) Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol 9:610CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kannan N, Rangaraj S, Gopalu K et al (2012) Curr Nanosci 8:902–908CrossRefGoogle Scholar
  45. Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Nanotechnology. Springer, Singapore, pp 279–291CrossRefGoogle Scholar
  46. Kaweeteerawat C, Ivask A, Liu R et al (2015) Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environ Sci Technol 49(2):1105–1112CrossRefGoogle Scholar
  47. Khandelwal N, Barbole RS, Banerjee SS et al (2016) Budding trends in integrated pest management using advanced micro-and nano-materials: challenges and perspectives. J Environ Manag 184:157–169CrossRefGoogle Scholar
  48. Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  49. Klimant I, Ruckruh F, Liebsch G (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses. Mikrochim Acta 131:35–46CrossRefGoogle Scholar
  50. Konotop YO, Kovalenko MS, Ulynets VZ et al (2014) Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol Genet 48(2):99–102CrossRefGoogle Scholar
  51. Kumar V, Guleria P, Kumar V et al (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468CrossRefGoogle Scholar
  52. Kumar S, Kumar D, Dilbaghi N (2017) Preparation, characterization, and bio-efficacy evaluation of controlled release carbendazim-loaded polymeric nanoparticles. Environ Sci Pollut Res 24(1):926–937CrossRefGoogle Scholar
  53. Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5(16):7965–7973CrossRefGoogle Scholar
  54. Lai F, Wissing SA, Müller RH et al (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7:E10CrossRefGoogle Scholar
  55. Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372CrossRefGoogle Scholar
  56. Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem: Int J 29(3):669–675CrossRefGoogle Scholar
  57. Lee S, Chung H, Kim S et al (2013) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224:1668. Scholar
  58. Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111:455–460CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liao W, Lu X (2016) Determination of chemical hazards in foods using surface-enhanced Raman spectroscopy coupled with advanced separation techniques. Trends Food Sci Technol 54:103–113CrossRefGoogle Scholar
  60. Lin CA (2007) Size matters: regulating nanotechnology. Harv Environ Law Rev 31:350–407Google Scholar
  61. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  62. Liu Y, Yan L, Heiden P et al (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465CrossRefGoogle Scholar
  63. Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86:615–621CrossRefGoogle Scholar
  64. Liu XM, Zhang FD, Zhang SQ et al (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18Google Scholar
  65. Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients. Water Air Soil Pollut 227(1):42CrossRefGoogle Scholar
  66. López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ et al (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lu W, Lu ML, Zhang QP et al (2013) Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: synthesis, characterization, and in vitro evaluation. J Polym Sci A Polym Chem 51:3932–3940CrossRefGoogle Scholar
  68. Ma C, Chhikara S, Xing B et al (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778CrossRefGoogle Scholar
  69. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:1–7CrossRefGoogle Scholar
  70. Mahajan P, Shailesh K, Dhoke RK et al (2013) Nanotechnology 3:4052–4081Google Scholar
  71. Mahmoodzadeh H, Nabavi M, Kashefi H (2000) Effect of nanoscale titanium dioxide particles on the germination and growth of canola Brassica napus. J Ornam Hortic Plants 3:25–32Google Scholar
  72. Marschner H (1996) Mineral nutrition of higher plants. Academic Press/Harcourt Brace & Co, LondonGoogle Scholar
  73. Maruyama CR, Guilger M, Pascoli M et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:19768CrossRefPubMedPubMedCentralGoogle Scholar
  74. Moran KLM, Fitzgerald J, McPartlin DA et al (2016) Biosensor-based technologies for the detection of pathogens and toxins. In: Comprehensive analytical chemistry, vol 74. Elsevier, Amsterdam, pp 93–120. ISBN 978-0-444-63579-2Google Scholar
  75. Morla S, Rao CR, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci (JCBPS) 1(2):328Google Scholar
  76. Naderi MR, Abedi A (2012) J Nanotech 11(1):18–26Google Scholar
  77. Nadi E, Aynehband A, Mojaddam M (2013) Int J Biosci 3:267–272Google Scholar
  78. Nair R, Varghese SH, Nair BG (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154e163CrossRefGoogle Scholar
  79. Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9(9):19–27Google Scholar
  80. Navarro E, Baun A, Behra R (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372e386CrossRefGoogle Scholar
  81. Nguyen TNQ, Le VA, Hua QC, Nguyen TT (2014) Enhancing insecticide activity of anacardic acid by intercalating it into MgAl layered double hydroxides nanoparticles. J Vietnam Environ 6(3):208–211.
  82. Patra P, Mitra S, Debnath N et al (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28(49):16966–16978CrossRefGoogle Scholar
  83. Patra P, Choudhury SR, Mandal S et al (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vignaradiata) nutrition. In: Advanced nanomaterials and nanotechnology. Springer, Berlin/Heidelberg, pp 301–309CrossRefGoogle Scholar
  84. Patra S, Roy E, Madhuri R et al (2017) A technique comes to life for security of life: the food contaminant sensors. In: Nanobiosensors. Elsevier, Amsterdam, pp 713–772CrossRefGoogle Scholar
  85. Pola-López LA, Camas-Anzueto JL, Martínez-Antonio A et al (2018) Novel arsenic biosensor “POLA” obtained by a genetically modified E. coli bioreporter cell. Sensors Actuators B Chem 254:1061–1068CrossRefGoogle Scholar
  86. Puoci F, Iemma F, Picci N (2008) Stimuli-responsive molecularly imprinted polymers for drug delivery: a review. Current Drug Deliv 5(2):85–96CrossRefGoogle Scholar
  87. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  88. Rajaie M, Ziaeyan AH (2009) Int J Plant Prod 3(3):35–440Google Scholar
  89. Ramyadevi J, Jeyasubramanian K, Marikani A et al (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116CrossRefGoogle Scholar
  90. Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124e133CrossRefGoogle Scholar
  91. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, Common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197Google Scholar
  92. Saharan V, Mehrotra A, Khatik R et al (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683CrossRefPubMedPubMedCentralGoogle Scholar
  93. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis 2(1):2Google Scholar
  94. Schmälzlin E, van Dongen JT, Klimant I (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants. Biophys J 89:1339–1345CrossRefPubMedPubMedCentralGoogle Scholar
  95. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicon esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17CrossRefGoogle Scholar
  96. Singh S (2012) Achieving second green revolution through nanotechnology in India. Agric Situat India:545–572Google Scholar
  97. Singh S, Singh BK, Yadav SM (2014) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5. Scholar
  98. Sinha K, Ghosh J, Sil PC (2017) New pesticides: a cutting-edge view of contributions from nanotechnology for the development of sustainable agricultural pest control. In: New pesticides and soil sensors. Elsevier, Amsterdam, pp 47–79. ISBN 978-0-12-804299-1CrossRefGoogle Scholar
  99. Stephenson GR (2003) Pesticide use and world food production: risks and benefits. In: Environmental fate and effects of pesticides. American Chemical Society, Washington, DC, pp 261–270CrossRefGoogle Scholar
  100. Suh WH, Suslick KS, Stucky GD et al (2009) Nanotechnology, nanotoxicology and neuroscience. Prog Neurobiol 87:133e170CrossRefGoogle Scholar
  101. Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959CrossRefPubMedPubMedCentralGoogle Scholar
  102. Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012) J Curr Nanosci 8:902–908CrossRefGoogle Scholar
  103. Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In Proceedings of the international conference on production engineering, 1974–8, vol 2, pp 18–23Google Scholar
  104. Tarafdar JC, Raliya R, Rathore I (2012a) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89CrossRefGoogle Scholar
  105. Tarafdar JC, Agarwal A, Raliya R et al (2012b) Adv Sci Eng Med 4:1–5CrossRefGoogle Scholar
  106. Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39(5):1354–1358CrossRefPubMedPubMedCentralGoogle Scholar
  107. Verma N, Kaur G (2016) Trends on biosensing systems for heavy metal detection. In: Comprehensive analytical chemistry, vol 74. Elsevier, Amsterdam, pp 33–71. ISBN 978-0-444-63579-2Google Scholar
  108. Viirlaid E, Riiberg R, Mäeorg U et al (2009) Glyphosate attachment on aminoactivated carriers for sample stabilization and concentration. Agron Res 13:1152–1159Google Scholar
  109. Walker TS, Bais HP, Grotewold E et al (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wang Y, Cui H, Sun C et al (2014) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9:2490PubMedPubMedCentralGoogle Scholar
  111. Wang C, Otto S, Dorn M et al (2019) Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength. Anal Chem 91(3):2337–2344CrossRefGoogle Scholar
  112. Xu L, Liu Y, Bai R et al (2010) Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem 82:349e372CrossRefGoogle Scholar
  113. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132CrossRefPubMedPubMedCentralGoogle Scholar
  114. Yang FL, Li XG, Zhu F et al (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162CrossRefPubMedPubMedCentralGoogle Scholar
  115. Yang Y, Cheng J, Garamus VM et al (2018) Preparation of an environmentally friendly formulation of the insecticide nicotine hydrochloride through encapsulation in chitosan/tripolyphosphate nanoparticles. J Agric Food Chem 66(5):1067–1074CrossRefPubMedPubMedCentralGoogle Scholar
  116. Yu Z, Sun X, Song H et al (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6(06):591Google Scholar
  117. Yuvakkumar R, Elango V, Rajendran V et al (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int J Green Nanotechnol 3(3):180–190CrossRefGoogle Scholar
  118. Zhang J, Li M, Fan T et al (2013) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res 20:107CrossRefGoogle Scholar
  119. Zhang D, Hua T, Xiao F et al (2015) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anmol Gupta
    • 1
  • Ambreen Bano
    • 1
  • Smita Rai
    • 1
  • Neelam Pathak
    • 2
    Email author
  • Swati Sharma
    • 1
  1. 1.Department of BiosciencesIntegral UniversityLucknowIndia
  2. 2.Department of BiochemistryDr. Rammanohar Lohia Avadh UniversityAyodhyaIndia

Personalised recommendations