Biogenic Synthesis of Gold Nanoparticles and Their Potential Application in Agriculture

  • Fatemeh Graily-Moradi
  • Ayda Maadani Mallak
  • Mansour GhorbanpourEmail author


Nanotechnology is a new approach for the production of particles with unique features at the nanoscale dimensions. Among the various routes available for the synthesis of these nanoparticles, biogenic synthesis is a simple, low-cost, and eco-friendly method. The biosynthesis of gold nanoparticles is provided by various natural sources including plants, fungi, bacteria, actinomycetes, yeasts, and algae. Gold nanoparticles of various shapes and sizes are synthesized using biomass and/or extract of the organism. Enzymes secreted by microorganisms and metabolites of plants act as reducing, stabilizing, and capping agents for the production of the nanoparticles. The gold nanoparticles have antibacterial/antifungal properties that can be used to protect plants against pathogens. In addition, they can be applied for pesticide identification and water purification. This chapter focuses on the biosynthesis of gold nanoparticles, their characterization, and application in agriculture.


Agriculture Biogenic synthesis Biosynthesis Extracellular Gold nanoparticle Intracellular Nanotechnology 


  1. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039CrossRefGoogle Scholar
  2. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalo tolerant actinomycete, Rhodococcus species. Nanotechnology 14:824CrossRefGoogle Scholar
  5. Ahmadi SZ, Ghorbanpour M, Hadian J, Salehi-Arjmand H (2018) Impact of foliar spray of spherical Nano-carbon and Salicylic acid on physiological traits and Parthenolide content in two feverfew cultivars (Tanacetum parthenium Linn. cv. Pharmasaat and Jelitto). J Med Plant 17(4):82–98Google Scholar
  6. Ai K, Liu Y, Lu L (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131:9496–9497CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671CrossRefPubMedPubMedCentralGoogle Scholar
  8. Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 108:60–65CrossRefPubMedPubMedCentralGoogle Scholar
  9. Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004a) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382CrossRefGoogle Scholar
  10. Armendariz V, Jose-Yacaman M, Duarte Moller A, Peralta-Videa JR, Troiani H, Herrera I, Gardea-Torresdey JL (2004b) HRTEM characterization of gold nanoparticles produced by wheat biomass. Revista Mexicana de Fisica Supplement 50:7–11Google Scholar
  11. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonellafoenum-graecum and its size-dependent catalytic activity. Spectrochim Acta A Mol Biomol Spectrosc 97:1–5CrossRefGoogle Scholar
  12. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  13. Bai LY, Zhang YP, Chen J, Zhou XM, Hu LF (2010) Rapid, sensitive and selective detection of pymetrozine using gold nanoparticles as colorimetric probes. Micro Nano Lett 5:304–308CrossRefGoogle Scholar
  14. Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot 39:139–146CrossRefGoogle Scholar
  15. Barabadi H, Honary S, Mohammadi MA, Ahmadpour E, Rahimi MT, Alizadeh A, Naghibi F, Saravanan M (2017) Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res 24:5800–5810CrossRefGoogle Scholar
  16. Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chegini E, Ghorbanpour M, Hatam M, Taghizadeh M (2017) Effect of multi-walled carbon nanotubes on physiological traits, phenolic contents and antioxidant capacity of Salvia mirzayanii Rech. f & Esfandunder drought stress. J Med Plant 16(2):191–207Google Scholar
  19. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327CrossRefPubMedPubMedCentralGoogle Scholar
  20. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefPubMedPubMedCentralGoogle Scholar
  21. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefPubMedPubMedCentralGoogle Scholar
  22. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthesarbortristis flower extract. Bioprocess Biosyst Eng 34:615–619CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dauthal P, Mukhopadhyay M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res 51:13014–13020CrossRefGoogle Scholar
  24. Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25:1129–1135CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dubey SP, Lahtinen M, Sillanpää M (2010a) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 364:34–41CrossRefGoogle Scholar
  27. Dubey SP, Lahtinen M, Sillanpää M (2010b) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071CrossRefGoogle Scholar
  28. El-Batal AI, ElKenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Reps 5:31–39CrossRefGoogle Scholar
  29. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401CrossRefGoogle Scholar
  30. Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces 75:584–589CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Ind J Plant Physiol 20(3):249–256CrossRefGoogle Scholar
  32. Ghorbanpour M, Fahimirad SH (2017) Plant nanobionics a novel approach to overcome the environmental challenges. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental. Springer.
  33. Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759CrossRefGoogle Scholar
  34. Ghorbanpour M, Hadian (2017) Engineered nanomaterials and their interactions with plant cells: injury indices and detoxification pathways. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, Soil biology 48.
  35. Ghorbanpour M, Hatami M (2014) Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. J Hortic Sci Biotechnol 89(6):712–718CrossRefGoogle Scholar
  36. Ghorbanpour M, Hatami H (2015) Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. Ind J Plant Physiol 20(2):116–123CrossRefGoogle Scholar
  37. Ghorbanpour M, Hatami M, Hatami M (2015) Activating antioxidant enzymes, hyoscyamine and scopolamine biosynthesis of Hyoscyamus niger L. plants with nano-sized titanium dioxide and bulk application. Acta Agric Slov 105:23–32CrossRefGoogle Scholar
  38. Ghorbanpour M, Khaltabadi Farahani AH, Hadian J (2018) Potential toxicity of nano-graphene oxide on callus cell of Plantago major L. under polyethylene glycol-induced dehydration. Ecotoxicol Environ Saf 148:910–922CrossRefGoogle Scholar
  39. Gittins DI, Caruso F (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed 40:3001–3004CrossRefGoogle Scholar
  40. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin- gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679CrossRefGoogle Scholar
  41. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gopinath K, Venkatesh KS, Ilangovan R, Sankaranarayanan K, Arumugam A (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crop Prod 50:737–742CrossRefGoogle Scholar
  43. Hatami M (2017) Stimulatory and inhibitory effects of Nanoparticulates on seed germination and seedling vigor indices. In: Ghorbanpour M et al (eds) Nanoscience and plant–soil systems, Soil biology 48.
  44. Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of Pelargonium plants exposed to dark storage. J Hortic Res 21(1):15–20CrossRefGoogle Scholar
  45. Hatami M, Ghorbanpour M (2014) Defense enzymes activity and biochemical variations of Pelargonium zonale in response to nanosilver particles and dark storage. Turk J Biol 38:130–139CrossRefGoogle Scholar
  46. Hatami M, Hatamzadeh A, Ghasemnezhad M, Ghorbanpour M (2013) The comparison of antimicrobial effects of silver nanoparticles (SNP) and silver nitrate(AgNo3) to extend the vase life of ‘red ribbon’ cut rose flowers. Trakia J Sci 2:144–151Google Scholar
  47. Hatami M, Ghorbanpour M, Salehiarjomand H (2014) Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. J Biol Environ Sci 8(22):53–59Google Scholar
  48. Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hatami M, Hosseini SM, Ghorbanpour M, Kariman K (2019) Physiological and antioxidative responses to GO/PANI nanocomposite in intact and demucilaged seeds and young seedlings of Salvia mirzayanii. Chemosphere 233:920–935CrossRefPubMedPubMedCentralGoogle Scholar
  51. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  52. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–4300CrossRefPubMedPubMedCentralGoogle Scholar
  53. Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F (2013) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13:1427–1430CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes-a review. Colloids Surf B Biointerfaces 121:474–483CrossRefPubMedPubMedCentralGoogle Scholar
  55. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  56. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  57. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces 73:219–223CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601CrossRefPubMedPubMedCentralGoogle Scholar
  59. Khadem Moghadam N, Hatami M, Rezaei S, Bayat M, Asgari Lajayer B (2019) Induction of plant defense machinery against nanomaterials exposure. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier, LondonGoogle Scholar
  60. Khalil MH, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au nanoparticles using olive leaf extract. Arab J Chem 5(4):431–437Google Scholar
  61. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  62. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  63. Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate and gold (III)− chloride complexes. Langmuir 22:2780–2787CrossRefPubMedPubMedCentralGoogle Scholar
  64. Maghsoodi MR, AsgariLajayer B, Hatami M, Mirjalili MH (2019) Challenges and opportunities of nanotechnology in plants-soil mediated systems: beneficial role, phytotoxicity and phytoextraction. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application, Elsevier, LondonGoogle Scholar
  65. Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102CrossRefPubMedPubMedCentralGoogle Scholar
  66. Malarkodi C, Rajeshkumar S, Annadurai G (2017) Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles. Food Control 80:11–18CrossRefGoogle Scholar
  67. Mohammadi M, Hatami M, Feghezadeh K, Ghorbanpour M (2018) Mitigating effect of nano-zerovalent iron, iron sulfate and EDTA against oxidative stress induced by chromium in Helianthus annuus L. Acta Physiol Plant 40:69CrossRefGoogle Scholar
  68. Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G, Varga T, Kónya Z, Tóth-Szeles E, Szűcs R, Lagzi I (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mortazavi SM, Khatami M, Sharifi I, Heli H, Kaykavousi K, Poor MHS, Kharazi S, Nobre MAL (2017) Bacterial biosynthesis of gold nanoparticles using Salmonella enterica subsp. enterica serovar Typhi isolated from blood and stool specimens of patients. J Clust Sci 28:2997–3007CrossRefGoogle Scholar
  70. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  71. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463CrossRefPubMedPubMedCentralGoogle Scholar
  72. Muthuvel A, Adavallan K, Balamurugan K, Krishnakumar N (2014) Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed Prev Nutr 4:325–332CrossRefGoogle Scholar
  73. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  74. Ochekpe NA, Olorunfemi PO, Ngwuluka NC (2009) Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop J Pharm Res 8(3):275–287Google Scholar
  75. Pinto RJ, Lucas JM, Morais MP, Santos SA, Silvestre AJ, Marques PA, Freire CS (2017) Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract. Ind Crop Prod 105:83–92CrossRefGoogle Scholar
  76. Ponmurugan P (2016) Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for the biological control of Phomopsis canker disease in tea plants. IET Nanobiotechnol 11:261–267CrossRefGoogle Scholar
  77. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10CrossRefGoogle Scholar
  78. Rajasree SR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:S796–S799CrossRefGoogle Scholar
  79. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  80. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem.
  82. Shen W, Qu Y, Pei X, Li S, You S, Wang J, Zhang Z, Zhou J (2017) Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J Hazard Mater 321:299–306CrossRefGoogle Scholar
  83. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sneha K, Sathishkumar M, Lee SY, Bae MA, Yun YS (2011) Biosynthesis of Au nanoparticles using cumin seed powder extract. J Nanosci Nanotechnol 11:1811–1814CrossRefPubMedPubMedCentralGoogle Scholar
  85. Soltani Nejad M, Shahidi Bonjar GH, Khaleghi N (2015) Biosynthesis of gold nanoparticles using Streptomyces fulvissimus isolate. Nanomed J 2:153–159Google Scholar
  86. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84CrossRefPubMedPubMedCentralGoogle Scholar
  87. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164CrossRefPubMedPubMedCentralGoogle Scholar
  88. Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196CrossRefPubMedPubMedCentralGoogle Scholar
  90. Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol 2013:1–5Google Scholar
  91. Thakur RK, Shirkot P, Dhirta B (2018) Studies on effect of gold nanoparticles on Meloidogyne incognita and tomato plants growth and development. Bio Rxiv 428144.
  92. Tian H, Ghorbanpour M, Kariman K (2018) Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind Crop Prod 126:403–414CrossRefGoogle Scholar
  93. Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environm Prog Sustain Energy 34:194–197CrossRefGoogle Scholar
  94. Zhang X, Sun Z, Cui Z, Li H (2014) Ionic liquid functionalized gold nanoparticles: synthesis, rapid colorimetric detection of imidacloprid. Sensors Actuators B Chem 191:313–319CrossRefGoogle Scholar
  95. Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497:280–285CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Fatemeh Graily-Moradi
    • 1
  • Ayda Maadani Mallak
    • 2
  • Mansour Ghorbanpour
    • 3
    Email author
  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Soil Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
  3. 3.Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran

Personalised recommendations