Application of Nanotechnology in Agricultural Farm Animals

  • Naresh L. Selokar
  • Seema Dua
  • Dharmendra Kumar
  • Bharti Sharma
  • Monika Saini


The agricultural farm animal production system is under a massive burden to provide adequate food to the rapidly growing human population. The emergence of new diseases and climate change has enhanced burdens on the animal production system. Nanotechnology, an application of materials at the nano scale, offers opportunities to improve animal health and production by providing better therapeutics, diagnostics, vaccines and adjuvants, animal feed and additives, and even helping animal reproduction. This chapter discusses the exciting examples of the selected application of nanotechnology in farm animals to realize the benefits of emerging nanotools that promise increase in food production from farm animals in a sustainable manner.


Nanotechnology Agriculture Farm animals Food production 


  1. Ajmal M, Yunus U, Matin A, Haq NU (2015) Synthesis, characterization and in vitro evaluation of methotrexate conjugated fluorescent carbon nanoparticles as drug delivery system for human lung cancer targeting. J Photochem Photobiol B 153:111–120CrossRefGoogle Scholar
  2. Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114CrossRefGoogle Scholar
  3. Bai DP, Lin XY, Huang YF, Zhang XF (2018) Theranostics aspects of various nanoparticles in veterinary medicine. Int J MolSci 19(11):3299CrossRefGoogle Scholar
  4. Bartlett JG, Gilbert DN, Spellberg B (2013) Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 56(10):1445–1450CrossRefGoogle Scholar
  5. Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11Google Scholar
  6. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393CrossRefGoogle Scholar
  7. Damian K, Konrad W (2018) The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J Chem 2018:5927058Google Scholar
  8. Durfey CL, Swistek SE, Liao SF, Crenshaw MA, Clemente HJ, Thirumalai RVKG, Steadman CS, Ryan PL, Willard ST, Feugang JM (2019) Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol 10:14CrossRefGoogle Scholar
  9. Emami T, Madani R, Rezayat SM, Golchinfar F, Sarkar S (2012) Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. J Appl Poult Res 21:563–566CrossRefGoogle Scholar
  10. Falchi L, Khalil WA, Hassan M, Marei WFA (2018) Perspectives of nanotechnology in male fertility and sperm function. Int J Vet Sci Med 6(2):265–269CrossRefGoogle Scholar
  11. Feugang JM, Youngblood RC, Greene JM, Willard ST, Ryan PL (2015) Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J Nanobiotechnol 13:1–16CrossRefGoogle Scholar
  12. Gross M (2013) Antibiotics in crisis. Curr Biol 23(24):R1063–R1075CrossRefGoogle Scholar
  13. Hill EK, Li J (2017) Current and future prospects for nanotechnology in animal production. J Anim Sci Biotechnol 8:26CrossRefGoogle Scholar
  14. Knight-Jones TJD, Rushton J (2013) The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Prev Vet Med 112(3-4):161–173CrossRefGoogle Scholar
  15. Kumanan V, Nugen SR, Baeumner AJ, Chang YF (2009) A biosensor assay for the detection of Mycobacterium avium subsp paratuberculosis in fecal samples. J Vet Sci 10(1):35–42CrossRefGoogle Scholar
  16. Muktar Y, Bikila T, Keffale M (2015) Application of nanotechnology for animal health and production improvement: a review. World Appl Sci J 33:1588–1596Google Scholar
  17. Odhiambo JF, DeJarnette JM, Geary TW, Kennedy CE, Suarez SS, Sutovsky M, Sutovsky P (2014) Increased conception rates in beef cattle inseminated with nanopurified bull semen. Biol Reprod 91:1–10CrossRefGoogle Scholar
  18. Peled N, Ionescu R, Nol P, Barash O, Mccollum M, Vercauteren K, Koslow M, Stahl R, Rhyan J, Haick H (2012) Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sens Actuators B Chem 171–172:588–594CrossRefGoogle Scholar
  19. Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12(6):509–517CrossRefGoogle Scholar
  20. Roco M (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14(3):337–346CrossRefGoogle Scholar
  21. Sabry MIE, McMillin KW, Sabliov CM (2018) Nanotechnology considerations for poultry and livestock production systems – a review. Ann Anim Sci 18(2):319–334CrossRefGoogle Scholar
  22. Scott NR (2005) Nanotechnology and animal health. Rev Sci Tech 24(1):425–432CrossRefGoogle Scholar
  23. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53CrossRefGoogle Scholar
  24. Soenen SJH, Himmelreich U, Nuytten N, Pisanic TR, Ferrari A, De Cuyper M (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6:2136–2145CrossRefGoogle Scholar
  25. Underwood C, van Eps AW (2012) Nanomedicine and veterinary science: the reality and the practicality. Vet J 193(1):12–23CrossRefGoogle Scholar
  26. Vasquez ES, Feugang JM, Willard ST, Ryan PL, Walters KB (2016) Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa. J Nanobiotechnol 14:1–9CrossRefGoogle Scholar
  27. Wanapat M, Cherdthong A, Phesatcha K, Kang S (2015) Dietary sources and their effects on animal production and environmental sustainability. Anim Nutr 1(3):96–103CrossRefGoogle Scholar
  28. Wanzhe Y, Yanan L, Peng L, Qinye S, Limin L, Jiguo S (2015) Development of a nanoparticle-assisted PCR assay for detection of porcine epidemic diarrhoea virus. J Virol Meth 220:18–20CrossRefGoogle Scholar
  29. Xiao M, Huang L, Dong X, Xie K, Shen H, Huang C, Xiao W, Jin M, Tang Y (2019) Integration of a 3D-printed read-out platform with a quantum dot-based immunoassay for detection of the avian influenza A (H7N9) virus. Analyst 144(8):2594–2603CrossRefGoogle Scholar
  30. Yuan P, Ma Q, Meng R, Wang C, Dou W, Wang G, Su X (2009) Multicolor quantum dot-encoded microspheres for the fluoroimmunoassays of chicken Newcastle disease and goat pox virus. J Nanosci Nanotechnol 9(5):3092–3098CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Naresh L. Selokar
    • 1
  • Seema Dua
    • 1
  • Dharmendra Kumar
    • 1
  • Bharti Sharma
    • 2
  • Monika Saini
    • 1
  1. 1.Division of Animal Physiology and ReproductionICAR-Central Institute for Research on BuffaloesHisarIndia
  2. 2.Department of Bio & Nano TechnologyGuru Jambheshwar University of Science & TechnologyHisarIndia

Personalised recommendations