Iterative Filtering-Based Automated Method for Detection of Normal and ALS EMG Signals

  • Richa Singh
  • Ram Bilas PachoriEmail author
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1124)


Electromyogram (EMG) signals have been proved very useful in identification of neuromuscular diseases (NMDs). In the proposed work, we have proposed a new method for the classification of normal and abnormal EMG signals to identify amyotrophic lateral sclerosis (ALS) disease. First, we have obtained all motor unit action potentials (MUAPs) from EMG signals. Extracted MUAPs are then decomposed using iterative filtering (IF) decomposition method and intrinsic mode functions (IMFs) are obtained. Features like Euclidean distance quadratic mutual information (QMIED), Cauchy–Schwartz quadratic mutual information (QMICS), cross information potential (CIP), and correntropy (COR) are computed for each level of IMFs separately. Statistical analysis of features has been performed by the Kruskal–Wallis statistical test. For classification, the calculated features are given as an input to the three different classifiers: JRip rules classifier, reduces error pruning (REP) tree classifier, and random forest classifier for the classification of normal and ALS EMG signals. The results obtained from classification process show that proposed classification method provides very accurate classification of normal and ALS EMG signals and better than the previously existing methods.


  1. 1.
    E.R. Kandel, J.H. Schwartz, Principles of Neural Science (McGraw Hill, Appleton & Lange, 2012)Google Scholar
  2. 2.
    European respiratory journal, ERS publications.
  3. 3.
    A.E.H. Emery, Population frequencies of inherited neuromuscular diseases—A world survey. Neuromuscul. Disord. 1(1), 19–29 (1991)CrossRefGoogle Scholar
  4. 4.
    M.B.I. Raez, M.S. Hussain, F.Mohd.Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications, 8, 11–35 (2006)Google Scholar
  5. 5.
    R.R. Sharma, P. Chandra, R.B. Pachori, Electromyogram signal analysis using eigenvalue decomposition of the Hankel matrix. In: Advances in Intelligent Systems and Computing, vol 748. (Springer, Singapore, 2019)Google Scholar
  6. 6.
    A. Subasi, M. Yilmaz, H.R. Ozcalik, Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1), 360–367 (2006)CrossRefGoogle Scholar
  7. 7.
    A.B.M.S.U. Doulah, S.A. Fattah, Neuromuscular disease classification based on mel frequency cepstrum of motor unit action potential. In: International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), pp. 1–4 (2014)Google Scholar
  8. 8.
    P.U. Kiran, N. Abhiram, S. Taran, V. Bajaj, TQWT based features for classification of ALS and healthy EMG signals. Am. J. Comput. Sci. Inf. Technol. 6(2), 19 (2018).
  9. 9.
    A. Sengur, Y. Akbulut, Y. Guo, V. Bajaj, Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm. Health Inf. Sci. Syst. 5(1), 9 (2017). Scholar
  10. 10.
    A. Hazarika, L. Dutta, M. Barthakur, M. Bhuyan, Two-fold feature extraction technique for biomedical signals classification. In: International Conference on Inventive Computation Technologies, vol. 2, pp. 1–4 (2016)Google Scholar
  11. 11.
    E. Stalberg, C. Bischoff, B. Falck, Outliers, a way to detect abnormality in quantitative EMG. Muscle Nerve 17, 392–399 (1994)CrossRefGoogle Scholar
  12. 12.
    O. Ulkir, G. Gokmen, E. Kaplanoglu, EMG signal classification using fuzzy logic. Balakan J. Electrcical Comput. Eng. 5(2), 97–101 (2017)CrossRefGoogle Scholar
  13. 13.
    E.W. Abel, H. Meng, A. Forster, D. Holder, Singularity characteristics of needle EMG IP signals. IEEE Trans. Biomed. Eng. 53(2), 219–225 (2006)CrossRefGoogle Scholar
  14. 14.
    V.K. Mishra, V. Bajaj, A. Kumar, G.K. Singh, Analysis of ALS andnormal EMG signals based on empirical mode decomposition. IET Sci., Meas. Technol. 10(8), 963–971 (2016)CrossRefGoogle Scholar
  15. 15.
    N.F. Guler, S. Kocer, Classification of EMG signals using PCA and FFT. J. Med. Syst. 29(3), 241–255 (2005)CrossRefGoogle Scholar
  16. 16.
    D. Joshi, A. Tripathi, R. Sharma, R.B. Pachori, Computer aided detection of abnormal EMG signals based on tunable-Q wavelet transform. In: International Conference on Signal Processing and Integrated Networks (2017)Google Scholar
  17. 17.
    R.R. Sharma, M. Kumar, R.B. Pachori, Classification of EMG Signals Using Eigenvalue Decomposition Based Time-Frequency Representation (Biomedical and Clinical Engineering for Healthcare Advancement, IGI Global, 2019)Google Scholar
  18. 18.
    K.C. McGill, Z.C. Lateva, H.R. Marateb, EMGLAB: an interactive EMG decomposition program. J. Neurosci. Methods 149(2), 121–133 (2005)CrossRefGoogle Scholar
  19. 19.
    K.C. McGill, Z.C. Lateva, M.E. Johanson, Validation of a computer-aided EMG decomposition method. Proceeding IEEE Eng. Med. Biol. Soc. Conf. 4744–4747 (2004)Google Scholar
  20. 20.
    M. Nikolic, C. Krarup, EMGTools, an adaptive and versatile tool for detailed EMG analysis. IEEE Trans. Biomed. Eng. 58, 2707–2718 (2011)CrossRefGoogle Scholar
  21. 21.
    K.C. McGill, Optimal resolution of superimposed action potentials. IEEE Trans. Biomed. Eng. 49, 640–650 (2002)CrossRefGoogle Scholar
  22. 22.
    L. Lin, Y. Wang, H. Zhou, Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 1(4), 543–560 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454(1971), 903 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Cicone, J. Liu, H. Zhou, Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis (2014). arXiv:1411.6051
  25. 25.
    R. Sharma, R.B. Pachori, A. Upadhyay, Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Comput. Appl. (2017)Google Scholar
  26. 26.
    V. Tangkaratt, H. Sasaki, M. Sugiyama, Direct Estimation of the Derivative of Quadratic Mutual Information with Application in Supervised Dimension Reduction (2015), arXiv:1508.01019v1, Accessed 5 Aug 2015
  27. 27.
    J.C. Principe, D. Xu, Q. Zhao, J.W. Fisher, Learning from examples with information theoretic criteria. VLSI Signal Processing 26(1–2), 61–77 (2000)CrossRefGoogle Scholar
  28. 28.
    D. xu, Energy, entropy and information potential for neural computation 31–33 (1999)Google Scholar
  29. 29.
    J.W. Xu, A.R.C. Paiva, I. Park, J.C. Principe, A reproducing kernel Hilbert space framework for information-theoretic learning. IEEE Trans. Signal Process. 56(12), 5891–5902 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Tang, H. Li, Information theoretic learning: Renyi’s entropy and kernel perspectives. IEEE Comput. Intell. Mag. 6(3), 60–62 (2011)Google Scholar
  31. 31.
    A. Gunduz, J.C. Principe, Correntropy as a novel measure for nonlinearity tests. Signal Process. 89(1), 14–23 (2009)CrossRefGoogle Scholar
  32. 32.
    W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    F.J. Rudolf, W.J. William, Statistical Methods (Academic Press, San Diego, CA, USA, 1993)Google Scholar
  34. 34.
    P.E. McKight, J. Najab, Kruskal-Wallis test. Corsini Encycl. Psychol. (2010)Google Scholar
  35. 35.
    T.P. Hettmansperger, Statistical Methods Based on Ranks (Wiley, New York, 1984)zbMATHGoogle Scholar
  36. 36.
    E. Ostertagova, O. Ostertag, J. Kovac, Methodology and application of the Kruskal-Wallis test. Appl. Mech. Mater. 611, 115–120 (2014)CrossRefGoogle Scholar
  37. 37.
    J.S. Maritz, Distribution-Free Statistical Methods (CRC Press, Chapman and Hall Mathematics Series, 1995)Google Scholar
  38. 38.
    C. Siegel, Castellan, Nonparametric Statistics for the Behavioral Sciences, 2nd edn. (McGraw-Hill, New York, 1988). ISBN 0070573573Google Scholar
  39. 39.
    G.W. Corder, D.I. Foreman, Nonparametric Statistics for Non-Statisticians (Wiley, 2009), pp. 99–105. ISBN 9780470454619Google Scholar
  40. 40.
    W.W. Cohen, Fast effective rule induction. In: 12th International Conference on Machine Learning (1995), pp. 115–123Google Scholar
  41. 41.
    V. Parsania, N.N. Jani, V. Bhalodiya, Applying Naïve bayes, BayesNet, PART, JRip and OneR Algorithms on Hypothyroid Database for Comparative Analysis, IJDI-ERET, 3 (2014)Google Scholar
  42. 42.
    R. Anil, R.P. Aharwal, D. Meghna, S.P. Saxena, R. Manmohan, J48 and JRIP rules for E-Governance data. Int. J. Comput. Sci. Secur. (IJCSS), 5(2) (2011)Google Scholar
  43. 43.
    I.H. Witten, E. Frank, Data mining: practical machine learning tools and techniques-2nd edn., The United States of America, Morgan Kaufmann series in data management systems (2005)Google Scholar
  44. 44.
    B. Srinivasan, P. Mekala, Mining social networking data for classification using REPTree. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 2, 155–160 (2014)Google Scholar
  45. 45.
    M. Pal, Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005)CrossRefGoogle Scholar
  46. 46.
    L. Breiman, Random Forests-Random Features, Technical Report 567 (University of California, Berkeley, Statistics Department, 1999)Google Scholar
  47. 47.
    T.K. Ho, Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition (Montreal, QC, 1995), pp. 278–282Google Scholar
  48. 48.
    T. Shi, S. Horvath, Unsupervised learning with random forest predictors. J. Comput. Graph. Stat. 15, 118–138 (2006)MathSciNetCrossRefGoogle Scholar
  49. 49.
    A. Baratloo, M. Hosseini, A. Negida, G.E. Ashal, Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency 3(2), 48–49 (2015)Google Scholar
  50. 50.
    W. Zhu, N. Zeng, N. Wang, Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations (North-East SAS Users Group, Health Care and Life Sciences, 2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations