Advertisement

Quorum Quenching for Sustainable Environment: Biology, Mechanisms, and Applications

  • Naga Raju MaddelaEmail author
  • Luz Cecilia García Cruzatty
  • Daniel Alfredo Leal-Alvarado
  • Jessenia Castro Olaya
  • Sagnik Chakraborty
  • Anupam Mukherjee
Chapter
  • 39 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)

Abstract

Quorum sensing signaling is a hierarchal system in bacteria to communicate with each other and coordinate their activities. Prevention of the QS pathway by disrupting signals is called quorum quenching (QQ), which is essential not just in medicine and healthcare settings but also in membrane bioreactors, aquaculture, and agriculture. QQ could be achieved either by interfering with the QS signaling pathway (e.g., signal generator or receptor) or intercepting the QS molecules. Research on QQ led to the development of strategies that mitigate biofilm-based problems in medicine, agronomy, and water engineering. The QQ-strategy is being given importance in recent times as there is an immediate need to search for an alternative or a complementary approach to phytochemicals and antibiotics. This chapter starts with the historical aspects of QQ; furthermore, it highlights the global research in the area of QQ and the mechanism of quenching pathways. Afterward, applications of QQ-strategies in medicine, agriculture, aquaculture, and water engineering are discussed. Finally, challenges and prospects of QQ technology are delineated.

Keywords

Quorum quenching Mechanism Medicine Agriculture Aquaculture Wastewater treatment 

Abbreviations

AHLs/HSL

N-acyl homoserine lactones

AI-2

Auto Inducer 2

AIPs

Autoinducing peptides

AMR

Anti-microbial resistance

CA

Canada

FO-MBR

Forward osmosis-MBR

GCL

γ-Caprolactone

GMP

Guanosine monophosphate

IDRC

International Development Research Centre

MBBR

Moving bed biofilm reactors

MBfR

Membrane biofilm reactors

MBRs

Membrane bioreactors

MIC

Minimum inhibitory concentration

MRSA

Methicillin-resistant Staphylococcus aureus

NIH

National Institute of Health

Ntn

N-terminal nucleophile

ORFs

Open reading frames

PLLs

Phosphotriesterase-like lactonases

PON

Paraoxonase

QQ

Quorum quenching

QQ-AnMBR

QQ-anaerobic MBR

QQ-RO

QQ-reverse osmosis

QS

Quorum sensing

QSIs

Quorum sensing inhibitors

SiNPs

Silver nanoparticles

USA

United States of America

WHO

World Health Organization

WWT

Wastewater treatment

Notes

Acknowledgments

Dr. Naga Raju Maddela greatly acknowledges the Universidad Téchnica de Manabí, Portoviejo, Manabí, Ecuador, for the facilities and encouragement and his colleagues in the Instituto de Investigación and Facultad la Ciencias la Salud for their help in literature collection. The authors also thank Editor Dr. Pankaj Kumar Arora (Assistant Professor, Babasaheb Bhimrao Ambedkar University, Lucknow, India) for guidance and accepting our request to write this chapter.

References

  1. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45:13677–13686CrossRefGoogle Scholar
  2. Antunes LC, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282CrossRefGoogle Scholar
  3. Augustine N, Kumar P, Thomas S (2010) Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch Microbiol 192:1019–1022CrossRefGoogle Scholar
  4. Augustine N, Wilson PA, Kerkar S, Thomas S (2012) Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol 64:338–342CrossRefGoogle Scholar
  5. Augustine N, Goel AK, Sivakumar KC, Kumar RA, Thomas S (2014) Resveratrol—a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 21:286–289CrossRefGoogle Scholar
  6. Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zhou Y, Zou Y, Yu Z, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855CrossRefGoogle Scholar
  7. Barbey C, Crepin A, Cirou A, Budin-Verneuil A, Orange N, Feuilloley M, Faure D, Dessaux Y, Burini JF, Latour X (2012) Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J Proteome Res 11:206–216CrossRefGoogle Scholar
  8. Barbey C, Crepin A, Bergeau D, Ouchiha A, Mijouin L, Taupin L, Orange N, Feuilloley M, Dufour A, Burini JF, Latour X (2013) In planta biocontrol of Pectobacterium atrosepticum by rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway. PLoS One 8:e66642CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bar-Rogovsky H, Hugenmatter A, Tawfik DS (2013) The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem 288(33):23914–23927CrossRefPubMedPubMedCentralGoogle Scholar
  10. Basavaraju M, Sisnity VS, Palaparthy R, Addanki PK (2016) Quorum quenching: signal jamming in dental plaque biofilms. J Dent Sci 11:349–352CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thurmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR (2011a) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6:e26278CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR (2011b) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155:86–94CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bokhove M, Nadal Jimenez P, Quax WJ, Dijkstra BW (2010) The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A 107:686–691CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brackman G, Celen S, Hillaert U, Van Calenbergh S, Cos P, Maes L, Nelis HJ, Coenye T (2011a) Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio spp. PLoS One 6:e16084CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011b) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bzdrenga J, Daude D, Remy B, Jacquet P, Plener L, Elias M, Chabriere E (2017) Biotechnological applications of quorum quenching enzymes. Chem Biol Interact 267:104–115CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cao Y, He S, Zhou Z, Zhang M, Mao W, Zhang H, Yao B (2012) Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 78:1899–1908CrossRefPubMedPubMedCentralGoogle Scholar
  19. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Camara M, Koh CL, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen CN, Chen CJ, Liao CT, Lee CY (2009) A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9:89CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cheong WS, Kim SR, Oh HS, Lee SH, Yeon KM, Lee CH, Lee JK (2014) Design of quorum quenching microbial vessel to enhance cell viability for biofouling control in membrane bioreactor. J Microbiol Biotechnol 24:97–105CrossRefPubMedPubMedCentralGoogle Scholar
  24. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chow JY, Wu L, Yew WS (2009) Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 48:4344–4353CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chow JY, Yang Y, Tay SB, Chua KL, Yew WS (2014) Disruption of biofilm formation by the human pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases. Antimicrob Agents Chemother 58:1802–1805CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chowdhary PK, Keshavan N, Nguyen HQ, Peterson JA, Gonzalez JE, Haines DC (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46:14429–14437CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chowdhary PK, Stewart L, Lopez C, Haines DC (2008) A single mutation in P450BM-3 enhances acyl homoserine lactone: acyl homoserine substrate binding selectivity nearly 250-fold. J Biotechnol 135:374–376CrossRefPubMedPubMedCentralGoogle Scholar
  29. Christiaen SEA, Brackman G, Nelis HJ, Coenye T (2011) Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87:213–219CrossRefPubMedPubMedCentralGoogle Scholar
  30. Christiaen SE, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T (2014) Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathogen Dis 70:271–279CrossRefGoogle Scholar
  31. Chu W, Zhou S, Zhu W, Zhuang X (2014) Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep 4:5446CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9:1511–1522CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78:481–492CrossRefPubMedPubMedCentralGoogle Scholar
  34. Clamens T, Rosay T, Crepin A, Grandjean T, Kentache T, Hardouin J, Bortolotti P, Neidig A, Mooij M, Hillion M, Vieillard J, Cosette P, Overhage J, O’Gara F, Bouffartigues E, Dufour A, Chevalier S, Guery B, Cornelis P, Feuilloley MG, Lesouhaitier O (2017) The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci Rep 7:41178CrossRefPubMedPubMedCentralGoogle Scholar
  35. Czajkowski R, Krzyzanowska D, Karczewska J, Atkinson S, Przysowa J, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  36. D’Alvise PW, Lillebø S, Wergeland HI, Gram L, Bergh Ø (2013) Protection of cod larvae from vibriosis by Phaeobacter spp.: a comparison of strains and introduction times. Aquaculture 384–387:82–86CrossRefGoogle Scholar
  37. D’Angelo-Picard C, Chapelle E, Ratet P, Faure D, Dessaux Y (2011) Transgenic plants expressing the quorum quenching lactonase AttM do not significantly alter root-associated bacterial populations. Res Microbiol 162:951–958CrossRefPubMedPubMedCentralGoogle Scholar
  38. Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 6:23347CrossRefPubMedPubMedCentralGoogle Scholar
  39. Defoirdt T, Boon N, Bossier P, Verstraete W (2004) Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture 240:69–88CrossRefGoogle Scholar
  40. Defoirdt T, Crab R, Wood TK, Sorgeloos P, Verstraete W, Bossier P (2006) Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl Environ Microbiol 72:6419CrossRefPubMedPubMedCentralGoogle Scholar
  41. Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479CrossRefPubMedPubMedCentralGoogle Scholar
  42. Defoirdt T, Boon N, Bossier P (2010) Can bacteria evolve resistance to quorum sensing disruption? PLoS Pathog 6:e1000989CrossRefPubMedPubMedCentralGoogle Scholar
  43. des Essarts YR, Sabbah M, Comte A, Soulere L, Queneau Y, Dessaux Y, Helias V, Faure D (2013) N,N’-alkylated Imidazolium-derivatives act as quorum-sensing inhibitors targeting the Pectobacterium atrosepticum-induced symptoms on potato tubers. Int J Mol Sci 14:19976–19986CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dinh J, Angeloni JT, Pederson DB, Wang X, Cao M, Dong Y (2014) Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1. PLoS One 9:e103290–e103290CrossRefPubMedPubMedCentralGoogle Scholar
  45. Dockrill P (2017) ScienceAlert—Health: These Brazilian Red Berries Could Hold The Key to Fighting Deadly SuperbugsGoogle Scholar
  46. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedPubMedCentralGoogle Scholar
  47. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817CrossRefPubMedPubMedCentralGoogle Scholar
  49. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dong W, Zhu J, Guo X, Kong D, Zhang Q, Zhou Y, Liu X, Zhao S, Ruan Z (2018) Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Sci Rep 8:6013CrossRefPubMedPubMedCentralGoogle Scholar
  52. Doranalli K, Ortiz A, (2018) Bacillus amyloliquefaciens CECT 5940 (Ecobiol®) expresses quorum quenching activityGoogle Scholar
  53. Ergön-Can T, Köse-Mutlu B, Koyuncu İ, Lee C-H (2017) Biofouling control based on bacterial quorum quenching with a new application: rotary microbial carrier frame. J Membr Sci 525:116–124CrossRefGoogle Scholar
  54. Fetzner S (2015) Quorum quenching enzymes. J Biotechnol 201:2–14CrossRefPubMedPubMedCentralGoogle Scholar
  55. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67CrossRefPubMedPubMedCentralGoogle Scholar
  56. Galloway WR, Hodgkinson JT, Bowden S, Welch M, Spring DR (2012) Applications of small molecule activators and inhibitors of quorum sensing in Gram-negative bacteria. Trends Microbiol 20:449–458CrossRefPubMedPubMedCentralGoogle Scholar
  57. GEN (2018) Genetic Engineering and Biotechnology News—Probiotic Good Bacteria Use Fengycins to Eliminate Bad BacteriaGoogle Scholar
  58. Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB (2003) Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 168:121–125CrossRefPubMedPubMedCentralGoogle Scholar
  59. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622CrossRefPubMedPubMedCentralGoogle Scholar
  60. Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D (2016) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116CrossRefGoogle Scholar
  61. Gu Y, Huang J, Zeng G, Shi Y, Hu Y, Tang B, Zhou J, Xu W, Shi L (2018) Quorum quenching activity of indigenous quorum quenching bacteria and its potential application in mitigation of membrane biofouling. J Chem Technol Biotechnol 93:1394–1400CrossRefGoogle Scholar
  62. Gupta P, Chhibber S, Harjai K (2015) Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model. Burns 41:153–162CrossRefGoogle Scholar
  63. Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5:251–257CrossRefPubMedPubMedCentralGoogle Scholar
  64. Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RB, McCarthy A, Toker L, Silman I, Sussman JL, Tawfik DS (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419CrossRefGoogle Scholar
  65. Hiblot J, Gotthard G, Chabriere E, Elias M (2012) Structural and Enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS One 7:e47028CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hiblot J, Gotthard G, Elias M, Chabriere E (2013) Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. PLoS One 8:e75272CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hraiech S, Hiblot J, Lafleur J, Lepidi H, Papazian L, Rolain JM, Raoult D, Elias M, Silby MW, Bzdrenga J, Bregeon F, Chabriere E (2014) Inhaled lactonase reduces Pseudomonas aeruginosa quorum sensing and mortality in rat pneumonia. PLoS One 9:e107125CrossRefPubMedPubMedCentralGoogle Scholar
  69. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949CrossRefPubMedPubMedCentralGoogle Scholar
  70. Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the Product of Gene PA1032, as the Second Acyl-Homoserine Lactone Acylase of Pseudomonas aeruginosa PAO1Google Scholar
  71. Huang W, Lin Y, Yi S, Liu P, Shen J, Shao Z, Liu Z (2012) QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS One 7:e46587CrossRefPubMedPubMedCentralGoogle Scholar
  72. Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151CrossRefGoogle Scholar
  73. Husain FM, Ahmad I, Asif M, Tahseen Q (2013) Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci 38:835–844CrossRefGoogle Scholar
  74. Husain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q, Khan MS, Alshabib NA (2015) Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front Microbiol 6:420CrossRefPubMedPubMedCentralGoogle Scholar
  75. Husain FM, Ahmad I, Al-Thubiani AS, Abulreesh HH, AlHazza IM, Aqil F (2017) Leaf extracts of mangifera indica L. inhibit quorum sensing—regulated production of virulence factors and biofilm in test bacteria. Front Microbiol 8:727CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hwang JH, Cicek N, Oleszkiewicz JA (2010) Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Res 44:2283–2291CrossRefGoogle Scholar
  77. ID (2019) Enzymes as antibiotics: new tools in the fight against infectionsGoogle Scholar
  78. IDRC (2016) International Development Research Centre—Integrated quorum quenching strategies to reduce antimicrobial resistance in shrimp aquaculture (i-QAS)Google Scholar
  79. IDRC (2019) International Development Research Centre—$21.2 million announced for research on Innovative Veterinary Solutions for Antimicrobial ResistanceGoogle Scholar
  80. Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T (2015a) Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl Mater Interfaces 7:27066–27077CrossRefPubMedPubMedCentralGoogle Scholar
  81. Ivanova K, Fernandes MM, Mendoza E, Tzanov T (2015b) Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl Microbiol Biotechnol 99:4373–4385CrossRefPubMedPubMedCentralGoogle Scholar
  82. Jiang W, Xia S, Liang J, Zhang Z, Hermanowicz SW (2013) Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res 47:187–196CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kim JS (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess Eng 12:308CrossRefGoogle Scholar
  85. Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK (2005) The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proc Natl Acad Sci U S A 102:17606–17611CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kim AL, Park SY, Lee CH, Lee CH, Lee JK (2014) Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J Microbiol Biotechnol 24:1574–1582CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kim YW, Sung C, Lee S, Kim KJ, Yang YH, Kim BG, Lee YK, Ryu HW, Kim YG (2015) MALDI-MS-based quantitative analysis for ketone containing homoserine lactones in Pseudomonas aeruginosa. Anal Chem 87:858–863CrossRefPubMedPubMedCentralGoogle Scholar
  88. Koch G, Nadal Jimenez P, Muntendam R, Chen Y, Papaioannou E, Heeb S, Camara M, Williams P, Cool RH, Quax WJ (2010) The acylase PvdQ has a conserved function among fluorescent Pseudomonas spp. Environ Microbiol Rep 2:433–439CrossRefPubMedPubMedCentralGoogle Scholar
  89. Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S, Streit WR (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 77:5089–5099CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kusada H, Zhang Y, Tamaki H, Kimura N, Kamagata Y (2019) Novel N-acyl homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities. Front Microbiol 10:455CrossRefPubMedPubMedCentralGoogle Scholar
  91. Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10:550–565CrossRefPubMedPubMedCentralGoogle Scholar
  92. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK (2002) Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lee KM, Lim J, Nam S, Yoon MY, Kwon YK, Jung BY, Park Y, Park S, Yoon SS (2011) Inhibitory effects of broccoli extract on Escherichia coli O157:H7 quorum sensing and in vivo virulence. FEMS Microbiol Lett 321:67–74CrossRefGoogle Scholar
  95. Lee J, Lee I, Nam J, Hwang DS, Yeon KM, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9:15424–15432CrossRefGoogle Scholar
  96. Li L, Hooi D, Chhabra SR, Pritchard D, Shaw PE (2004) Bacterial N-acylhomoserine lactone-induced apoptosis in breast carcinoma cells correlated with down-modulation of STAT3. Oncogene 23:4894–4902CrossRefGoogle Scholar
  97. Li S, Leung PHM, Xu X, Wu C (2018) Homogentisic acid γ-lactone suppresses the virulence factors of Pseudomonas aeruginosa by quenching its quorum sensing signal molecules. Chin Chem Lett 29:313–316CrossRefGoogle Scholar
  98. Li Y, Zhao J, Quan C, Jin L, Xu Y, Chen M (2019) Production, characterization, and powder preparation of quorum quenching acylase AiiO for pathogen control. Prep Biochem Biotechnol 49:151–157CrossRefGoogle Scholar
  99. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860CrossRefGoogle Scholar
  100. Liu D, Lepore BW, Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D (2005) Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc Natl Acad Sci U S A 102:11882–11887CrossRefPubMedPubMedCentralGoogle Scholar
  101. Liu D, Thomas PW, Momb J, Hoang QQ, Petsko GA, Ringe D, Fast W (2007) Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry 46:11789–11799CrossRefPubMedPubMedCentralGoogle Scholar
  102. Liu J, Eng CY, Ho JS, Chong TH, Wang L, Zhang P, Zhou Y (2019) Quorum quenching in anaerobic membrane bioreactor for fouling control. Water Res 156:159–167CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lowery CA, Abe T, Park J, Eubanks LM, Sawada D, Kaufmann GF, Janda KD (2009) Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide. J Am Chem Soc 131:15584–15585CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lyon GJ, Mayville P, Muir TW, Novick RP (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci U S A 97:13330–13335CrossRefPubMedPubMedCentralGoogle Scholar
  105. Maddela NR, Meng F (2020) Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Sci Total Environ 713:136402CrossRefPubMedPubMedCentralGoogle Scholar
  106. Maddela NR, Zhou Z, Yu Z, Zhao S, Meng F (2018) Functional determinants of extracellular polymeric substances in membrane biofouling: experimental evidence from pure-cultured sludge bacteria. Appl Environ Microbiol 84:e00756–e00718CrossRefPubMedPubMedCentralGoogle Scholar
  107. Maddela NR, Sheng B, Yuan S, Zhou Z, Villamar-Torres R, Meng F (2019) Roles of quorum sensing in biological wastewater treatment: a critical review. Chemosphere 221:616–629CrossRefPubMedPubMedCentralGoogle Scholar
  108. Mandrich L, Merone L, Manco G (2010) Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Environ Technol 31:1115–1127CrossRefPubMedPubMedCentralGoogle Scholar
  109. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127CrossRefPubMedPubMedCentralGoogle Scholar
  110. Medarametla P, Gatta V, Kajander T, Laitinen T, Tammela P, Poso A (2018) Structure-based virtual screening of LsrK kinase inhibitors to target quorum sensing. ChemMedChem 13:2400–2407CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76:4933–4942CrossRefPubMedPubMedCentralGoogle Scholar
  112. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81CrossRefPubMedPubMedCentralGoogle Scholar
  113. Molina L, Rezzonico F, Defago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187:3206–3213CrossRefPubMedPubMedCentralGoogle Scholar
  114. Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T (2008) Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal shewanella sp. strain MIB015. Biosci Biotechnol Biochem 72:1887–1893CrossRefPubMedPubMedCentralGoogle Scholar
  115. Morohoshi T, Tominaga Y, Someya N, Ikeda T (2012) Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 113:20–25CrossRefPubMedPubMedCentralGoogle Scholar
  116. Muhs A, Lyles JT, Parlet CP, Nelson K, Kavanaugh JS, Horswill AR, Quave CL (2017) Virulence inhibitors from brazilian peppertree block quorum sensing and abate dermonecrosis in skin infection models. Sci Rep 7:42275CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mukherjee M, Hu Y, Tan CH, Rice SA, Cao B (2018) Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes. Sci Adv 4:eaau1459CrossRefPubMedPubMedCentralGoogle Scholar
  118. Musthafa KS, Saroja V, Pandian SK, Ravi AV (2011) Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 36:55–67CrossRefPubMedPubMedCentralGoogle Scholar
  119. Musthafa KS, Balamurugan K, Pandian SK, Ravi AV (2012a) 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:679–686CrossRefPubMedPubMedCentralGoogle Scholar
  120. Musthafa KS, Sivamaruthi BS, Pandian SK, Ravi AV (2012b) Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenylacetic acid. Curr Microbiol 65:475–480CrossRefPubMedPubMedCentralGoogle Scholar
  121. Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600CrossRefPubMedPubMedCentralGoogle Scholar
  122. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57CrossRefGoogle Scholar
  123. Nelson LK, D’Amours GH, Sproule-Willoughby KM, Morck DW, Ceri H (2009) Pseudomonas aeruginosa las and rhl quorum-sensing systems are important for infection and inflammation in a rat prostatitis model. Microbiology 155:2612–2619CrossRefPubMedPubMedCentralGoogle Scholar
  124. Nhan DT, Cam DT, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016CrossRefPubMedPubMedCentralGoogle Scholar
  125. Nithya C, Aravindraja C, Pandian SK (2010) Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 161:293–304CrossRefPubMedPubMedCentralGoogle Scholar
  126. Nithya C, Devi MG, Karutha Pandian S (2011) A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling 27:519–528CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ochiai S, Yasumoto S, Morohoshi T, Ikeda T (2014) AmiE, a novel N-acylhomoserine lactone acylase belonging to the amidase family, from the activated-sludge isolate Acinetobacter sp. strain Ooi24. Appl Environ Microbiol 80:6919–6925CrossRefPubMedPubMedCentralGoogle Scholar
  128. Oh H-S, Lee C-H (2018) Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Membr Sci 554:331–345CrossRefGoogle Scholar
  129. Oh H-S, Yeon K-M, Yang C-S, Kim S-R, Lee C-H, Park SY, Han JY, Lee J-K (2012) Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ Sci Technol 46:4877–4884CrossRefPubMedPubMedCentralGoogle Scholar
  130. Oh HS, Kim SR, Cheong WS, Lee CH, Lee JK (2013) Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant. Appl Microbiol Biotechnol 97:10223–10231CrossRefPubMedPubMedCentralGoogle Scholar
  131. Okano C, Murota D, Nasuno E, Iimura KI, Kato N (2019) Effective quorum quenching with a conformation-stable recombinant lactonase possessing a hydrophilic polymeric shell fabricated via electrospinning. Mater Sci Eng C Mater Biol Appl 98:437–444CrossRefPubMedPubMedCentralGoogle Scholar
  132. Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J (2002) Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 12:325–328CrossRefGoogle Scholar
  133. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37CrossRefGoogle Scholar
  134. Palmer AG, Senechal AC, Mukherjee A, Ane JM, Blackwell HE (2014) Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem Biol 9:1834–1845CrossRefPubMedPubMedCentralGoogle Scholar
  135. Papaioannou E, Wahjudi M, Nadal-Jimenez P, Koch G, Setroikromo R, Quax WJ (2009) Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 53:4891–4897CrossRefPubMedPubMedCentralGoogle Scholar
  136. Paramá A (2019) Tendensias 21: Tendensias de la Salud—Posible final de la era de los antibióticosGoogle Scholar
  137. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550CrossRefGoogle Scholar
  138. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641CrossRefPubMedPubMedCentralGoogle Scholar
  139. Paul D, Kim YS, Ponnusamy K, Kweon JH (2009) Applicaiton of quorum quenching to inhibit biofilm formation. Environ Eng Sci 26:1319–1324CrossRefGoogle Scholar
  140. Peach KC, Bray WM, Shikuma NJ, Gassner NC, Lokey RS, Yildiz FH, Linington RG (2011) An image-based 384-well high-throughput screening method for the discovery of biofilm inhibitors in Vibrio cholerae. Mol BioSyst 7:1176–1184CrossRefPubMedPubMedCentralGoogle Scholar
  141. Pearson JP, Feldman M, Iglewski BH, Prince A (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334CrossRefPubMedPubMedCentralGoogle Scholar
  142. Pejin B, Ciric A, Dimitric Markovic J, Glamoclija J, Nikolic M, Sokovic M (2017) An insight into anti-biofilm and anti-quorum sensing activities of the selected anthocyanidins: the case study of Pseudomonas aeruginosa PAO1. Nat Prod Res 31:1177–1180CrossRefGoogle Scholar
  143. PHYSORG (2014) Invention prevents contamination of food packaging by bacterial biofilmsGoogle Scholar
  144. PHYSORG (2019) Compound allows bacterial communication to be controlled by lightGoogle Scholar
  145. Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo H-S, Villaruz AE, Glose KA, Fisher EL, Hunt RL, Li B, Chiou J, Pharkjaksu S, Khongthong S, Cheung GYC, Kiratisin P, Otto M (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562:532–537CrossRefPubMedPubMedCentralGoogle Scholar
  146. PoultryWorld (2018) Health Background—Keep gut health challenges at bayGoogle Scholar
  147. Prol García MJ, Alvise PW, Gram L (2013) Disruption of cell-to-cell signaling does not abolish the antagonism of Phaeobacter gallaeciensis toward the fish pathogen Vibrio anguillarum in algal systems. Appl Environ Microbiol 79:5414CrossRefPubMedPubMedCentralGoogle Scholar
  148. Pustelny C, Albers A, Büldtkarentzopoulos K, Parschat K, Chhabra SR, Cámara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16:1259–1267CrossRefPubMedPubMedCentralGoogle Scholar
  149. Raina S, De Vizio D, Odell M, Clements M, Vanhulle S, Keshavarz T (2009) Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Biochem 54:65–84CrossRefPubMedPubMedCentralGoogle Scholar
  150. Rasch M, Buch C, Austin B, Slierendrecht WJ, Ekmann KS, Larsen JL, Johansen C, Riedel K, Eberl L, Givskov M, Gram L (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by Vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27:350–359CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814CrossRefPubMedPubMedCentralGoogle Scholar
  152. Rehman ZU, Leiknes T (2018) Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol 9:1354–1354CrossRefPubMedPubMedCentralGoogle Scholar
  153. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Defago G, Haas D (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203–203CrossRefPubMedPubMedCentralGoogle Scholar
  155. Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 10:560–570CrossRefGoogle Scholar
  156. Romero M, Diggle SP, Heeb S, Camara M, Otero A (2008) Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  157. Romero M, Martin-Cuadrado AB, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217CrossRefGoogle Scholar
  158. Roy V, Fernandes R, Tsao CY, Bentley WE (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5:223CrossRefPubMedPubMedCentralGoogle Scholar
  159. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862CrossRefPubMedPubMedCentralGoogle Scholar
  160. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, Coquillette S, Fieberg AY, Accurso FJ, Campbell PW 3rd (2003) Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 290:1749–1756CrossRefPubMedPubMedCentralGoogle Scholar
  161. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901CrossRefPubMedPubMedCentralGoogle Scholar
  162. Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit WR (2009) Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 75:224CrossRefPubMedPubMedCentralGoogle Scholar
  163. ScienceDaily (2018) Novel antibacterial drugsGoogle Scholar
  164. Shepherd RW, Lindow SE (2009) Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 75:45CrossRefPubMedPubMedCentralGoogle Scholar
  165. Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol 46:1995–2005CrossRefGoogle Scholar
  166. Sifri CD, Mylonakis E, Singh KV, Qin X, Garsin DA, Murray BE, Ausubel FM, Calderwood SB (2002) Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70:5647–5650CrossRefPubMedPubMedCentralGoogle Scholar
  167. Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, Di Stefano A, Giacometti A, Offidani A (2016) Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of staphylococcal infected wound. PLoS One 11:e0151956CrossRefPubMedPubMedCentralGoogle Scholar
  168. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Cámara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682CrossRefPubMedPubMedCentralGoogle Scholar
  169. Smith KM, Bu Y, Suga H (2003) Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89CrossRefGoogle Scholar
  170. Smyth AR, Cifelli PM, Ortori CA, Righetti K, Lewis S, Erskine P, Holland ED, Givskov M, Williams P, Camara M, Barrett DA, Knox A (2010) Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis—a pilot randomized controlled trial. Pediatr Pulmonol 45:356–362PubMedGoogle Scholar
  171. Song XN, Cheng YY, Li WW, Li BB, Sheng GP, Fang CY, Wang YK, Li XY, Yu HQ (2014) Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors. Bioresour Technol 171:472–476CrossRefGoogle Scholar
  172. Stephenson K, Yamaguchi Y, Hoch JA (2000) The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J Biol Chem 275:38900–38904CrossRefGoogle Scholar
  173. Tan CH, Koh KS, Xie C, Zhang J, Tan XH, Lee GP, Zhou Y, Ng WJ, Rice SA, Kjelleberg S (2015) Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilm Microbiom 1:15006CrossRefGoogle Scholar
  174. Tang K, Su Y, Brackman G, Cui F, Zhang Y, Shi X, Coenye T, Zhang XH (2015) MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782CrossRefPubMedPubMedCentralGoogle Scholar
  175. Tannieres M, Beury-Cirou A, Vigouroux A, Mondy S, Pellissier F, Dessaux Y, Faure D (2013) A metagenomic study highlights phylogenetic proximity of quorum-quenching and xenobiotic-degrading amidases of the AS-family. PLoS One 8:e65473CrossRefPubMedPubMedCentralGoogle Scholar
  176. Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson J-J (2013) Quorum sensing and self-quorum quenching in the intracellular pathogen brucellamelitensis. PLoS One 8:e82514CrossRefPubMedPubMedCentralGoogle Scholar
  177. THE HINDU (2019) TIRUCHIRAPALLI—NIT: kick-starts programme under GIANGoogle Scholar
  178. Thierbach S, Bui N, Zapp J, Chhabra SR, Kappl R, Fetzner S (2014) Substrate-assisted O2 activation in a cofactor-independent dioxygenase. Chem Biol 21:217–225CrossRefGoogle Scholar
  179. Tinh NT, Asanka Gunasekara RA, Boon N, Dierckens K, Sorgeloos P, Bossier P (2007) N-acyl homoserine lactone-degrading microbial enrichment cultures isolated from Penaeus vannamei shrimp gut and their probiotic properties in Brachionus plicatilis cultures. FEMS Microbiol Ecol 62:45–53CrossRefGoogle Scholar
  180. Torabi Delshad S, Soltanian S, Sharifiyazdi H, Bossier P (2018) Effect of quorum quenching bacteria on growth, virulence factors and biofilm formation of Yersinia ruckeri in vitro and an in vivo evaluation of their probiotic effect in rainbow trout. J Fish Dis 41:1429–1438CrossRefGoogle Scholar
  181. Torres M, Rubio-Portillo E, Anton J, Ramos-Espla AA, Quesada E, Llamas I (2016) Selection of the N-acylhomoserine lactone-degrading bacterium alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture. Front Microbiol 7:646CrossRefPubMedPubMedCentralGoogle Scholar
  182. Turan NB, Engin GO (2018) Quorum quenching. Compr Anal Chem 81:117–149CrossRefGoogle Scholar
  183. Ueda A, Attila C, Whiteley M, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74CrossRefGoogle Scholar
  184. Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol Ecol 65:271–278CrossRefGoogle Scholar
  185. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322CrossRefPubMedPubMedCentralGoogle Scholar
  186. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366CrossRefPubMedPubMedCentralGoogle Scholar
  187. van Delden C, Kohler T, Brunner-Ferber F, Francois B, Carlet J, Pechere JC (2012) Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med 38:1118–1125CrossRefGoogle Scholar
  188. Vanjildorj E, Song SY, Yang ZH, Choi JE, Noh YS, Park S, Lim WJ, Cho KM, Yun HD, Lim YP (2009) Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin. Plant Cell Rep 28:1581–1591CrossRefGoogle Scholar
  189. Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai SD, Patil BS (2011) Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology 157:99–110CrossRefGoogle Scholar
  190. Wahjudi M, Papaioannou E, Hendrawati O, van Assen AH, van Merkerk R, Cool RH, Poelarends GJ, Quax WJ (2011) PA0305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology 157:2042–2055CrossRefGoogle Scholar
  191. Wang LH, Weng LX, Dong YH, Zhang LH (2004) Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem 279:13645–13651CrossRefGoogle Scholar
  192. Wang W-Z, Morohoshi T, Ikenoya M, Someya N, Ikeda T (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76:2524CrossRefPubMedPubMedCentralGoogle Scholar
  193. Wang WZ, Morohoshi T, Someya N, Ikeda T (2012) AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl Environ Microbiol 78:7985–7992CrossRefPubMedPubMedCentralGoogle Scholar
  194. Weiland-Bräuer N, Fischer MA, Pinnow N, Schmitz RA (2019a) Potential role of host-derived quorum quenching in modulating bacterial colonization in the moon jellyfish Aurelia aurita. Sci Rep 9:34CrossRefPubMedPubMedCentralGoogle Scholar
  195. Weiland-Bräuer N, Malek I, Schmitz RA (2019b) Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis. PLoS One 14:e0211366CrossRefPubMedPubMedCentralGoogle Scholar
  196. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP (2000) N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J 19:631–641CrossRefPubMedPubMedCentralGoogle Scholar
  197. Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J (2002) Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 57:212–216CrossRefPubMedPubMedCentralGoogle Scholar
  198. Wopperer J, Cardona ST, Huber B, Jacobi CA, Valvano MA, Eberl L (2006) A quorum-quenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex. Appl Environ Microbiol 72:1579–1587CrossRefPubMedPubMedCentralGoogle Scholar
  199. Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM (2009) Functional annotation and three-dimensional structure of Dr0930 from deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Biochemistry 48:2237–2247CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yang J-L (2007) Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar Biol 152:1121–1132CrossRefGoogle Scholar
  201. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717CrossRefPubMedPubMedCentralGoogle Scholar
  202. Yang X, Zhou Z, Raju MN, Cai X, Meng F (2017) Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant. J Environ Sci 57:150–161CrossRefGoogle Scholar
  203. Yeon KM, Cheong WS, Oh HS, Lee WN, Hwang BK, Lee CH, Beyenal H, Lewandowski Z (2009) Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol 43:380–385CrossRefPubMedPubMedCentralGoogle Scholar
  204. Yin H, Deng Y, Wang H, Liu W, Zhuang X, Chu W (2015) Tea polyphenols as an antivirulence compound disrupt quorum-sensing regulated pathogenicity of Pseudomonas aeruginosa. Sci Rep 5:16158CrossRefPubMedPubMedCentralGoogle Scholar
  205. Yu H, Lee K, Zhang X, Choo K-H (2019) Core-shell structured quorum quenching beads for more sustainable anti-biofouling in membrane bioreactors. Water Res 150:321–329CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:4638–4643CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zhang X, Lee K, Yu H, Mameda N, Choo K-H (2019) Photolytic quorum quenching: a new anti-biofouling strategy for membrane bioreactors. Chem Eng J 378:122235CrossRefGoogle Scholar
  208. Zhao B, Zhang S, Qian P-Y (2003) Larval settlement of the silver- or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. Aquaculture 220:883–901CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Naga Raju Maddela
    • 1
    • 2
    Email author
  • Luz Cecilia García Cruzatty
    • 1
    • 3
  • Daniel Alfredo Leal-Alvarado
    • 1
    • 3
  • Jessenia Castro Olaya
    • 3
  • Sagnik Chakraborty
    • 4
  • Anupam Mukherjee
    • 5
  1. 1.Instituto de InvestigaciónUniversidad Técnica de ManabíPortoviejoEcuador
  2. 2.Faculdad la Ciencias la SaludUniversidad Técnica de ManabíPortoviejoEcuador
  3. 3.Faculdad de AgronomíaUniversidad Técnica de ManabíPortoviejoEcuador
  4. 4.School of Energy & Environmental EngineeringHebei University of TechnologyTianjinPeople’s Republic of China
  5. 5.Department of Chemical EngineeringHaldia Institute of TechnologyHaldia, Purba MedinipurIndia

Personalised recommendations