Advertisement

Microalgal Technology: A Promising Tool for Wastewater Remediation

  • Meenu Thakur
  • Sakshi Bajaal
  • Neha Rana
  • Madan L. Verma
Chapter
  • 31 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)

Abstract

Many species of microalgae have excellent ability to remove nitrogen, phosphorus, heavy metals, pesticides, organic and inorganic compounds, and pathogens from wastewater. Microalgae species grow well in wastewater and may be used for treatment of municipal, industrial, agro-industrial, and livestock wastewaters. Furthermore, microalgae biomass is an excellent source of production of various valuable products. In this chapter, applications of microalgae for treatment of wastewater and production of valuable products are discussed.

Keywords

Phycoremediation Microalgae Wastewater Bioenergy Metabolites 

Notes

Acknowledgment

Authors would like to thank the Director, Indian Institute of Information Technology Una, for providing the necessary facility to carry out the present work.

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment review. Saudi J Biol Sci 19:257–275CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdel-Raouf N, Ibraheem IBM, Hammouda O (2003) Eutrophication of river Nile as indicator of pollution. In: Al-Azhar Bull. of Sci Proceeding of 5th Int. Sci. Conf. 25–27 March 2003 pp. 293–306Google Scholar
  3. Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microbial mass culture. CRC Press, Boca Raton, pp 331–338Google Scholar
  4. Abraham PJV, Butter RD, Sigene DC (1997) Seasonal changes in whole-cell metal levels in protozoa of activated sludge. Ecotox Environ Safe 38:272–280CrossRefGoogle Scholar
  5. Aharon A, Yosef A (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806CrossRefGoogle Scholar
  6. Akpor OB (2011) Wastewater effluent discharge: effects and treatment processes. 3rd international conference on chemical biological and environmental engineering. Biol Environ Eng 20:85–91Google Scholar
  7. Aksu Z, Dönmez G (2000) The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Process Biochem 36:451–458CrossRefGoogle Scholar
  8. Aksu Z, Dönmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40:2443–2454CrossRefGoogle Scholar
  9. Ansa EDO, Lubberding HJ, Ampofo JA, Gijzen HJ (2011) The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol Eng 37(2):317–324CrossRefGoogle Scholar
  10. Arvin E (1983) Observations supporting phosphate removal by biologically mediated chemical precipitation: a review. Water Sci Technol 15:43–63CrossRefGoogle Scholar
  11. Asulabh KS, Supriya G, Ramachandra TV (2012) Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp. microalgae for use in tropical aquaculture. Proceedings of the National conference on conservation and management of wetland ecosystem Nov 6–9 lake kottayam Kerala. pp. 27–32Google Scholar
  12. Azov Y (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol 43:1300–1306CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baba M, Snoeck R, Pauwels R, De Clercq E (1998) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745CrossRefGoogle Scholar
  14. Baicha Z, Salar-Garcia MJ, Ortiz-Martinez VM, Hernandez-Fernandez FJ, De los Rios AP, Labjar N, Lotfi E, Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116CrossRefGoogle Scholar
  15. Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. J BioremedBiodeg 9(1):1–10Google Scholar
  16. Becker EW (1994) Microalgae, biotechnology and microbiology. Cambridge University Press, Cambridge. 10:1-291. IncompleteGoogle Scholar
  17. Béress A, Wassermann O, Tahhan S, Bruhn T, Béress L, Kraiselburd N, Gonzales LV, Motta GE, Chavez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress, in the ecology of cyanobacteria. Springer, Dordrecht, pp 397–442Google Scholar
  19. Borowitzka MA (1988) Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 153–196Google Scholar
  20. Burlew JS (1953) Algal culture from laboratory to pilot plant. Algal Culture 600(1):49–50Google Scholar
  21. Canada Gazzette (2010) Wastewater systems effluent regulations. Regulatory impact analysis statement. Canada Gazzette 144:12–22Google Scholar
  22. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo C, Pinto E (2007a) Metabolites from algae with economical impact. Comp Biochem Physiol Toxicol Pharmacol 146(2):60–78CrossRefGoogle Scholar
  23. Cardozo KHM, Guaratinin T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Coepicolo C, Pinto E (2007b) Metabolites from algae with economical impact. Comp Biochem Physiol Part C 146:60–78CrossRefGoogle Scholar
  24. Carlsson H, Aspegren H, Lee N, Hilmer A (1997) Calcium phosphate precipitation in biological phphosphorus removal systems. Water Res 31(5):1047–1055CrossRefGoogle Scholar
  25. Chaiwong K, Kiatsirioat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606CrossRefGoogle Scholar
  26. Chevalier P, De la Noüe J (1985a) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzym Microb Technol 7:621–624CrossRefGoogle Scholar
  27. Chevalier P, De la Noüe P (1985b) Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotechnol Lett 7:395–400CrossRefGoogle Scholar
  28. Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS (2015) Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol 184:179–189CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of cr3þ, cd2þ, and cu2þ ions by blue-green alga Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84CrossRefGoogle Scholar
  30. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels and byproducts. Biotechnol Adv 29:686–702CrossRefGoogle Scholar
  31. Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45:7554–7560CrossRefGoogle Scholar
  32. Colak O, Kaya Z (1988) A study on the possibilities biological wastewater treatment using algae. Tur J Biol 12(1):18–29Google Scholar
  33. Colley Davies RJ, Donnison AM, Speed DJ (2000) Towards a mechanistic understanding of pond disinfection. Water Sci Technol 42:149–158CrossRefGoogle Scholar
  34. Commault AS, Lear G, Novis P (2014) Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell. N Z J Bot 52:48–59CrossRefGoogle Scholar
  35. Cossich ES, Tavares CRG, Ravagnani TMK (2002) Biosorption of chromium(III) by Sargassum sp. biomass. Electron J Biotechnol 5(2):133–140Google Scholar
  36. Curtis TP, Mara DD, Silva SA (1992) Influence of pH, oxygen and humid substances on ability of sunlight to damage fecal coliforms in waste stabilization pond water. Appl Environ Microbiol 58:1335–1343CrossRefPubMedPubMedCentralGoogle Scholar
  37. Day JG, Gong Y, Hu Q (2017) Microzooplanktonic grazers–a potentially devastating threat to the commercial success of microalgal mass culture. Algal Res 27:356–365CrossRefGoogle Scholar
  38. De Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627CrossRefGoogle Scholar
  39. De la Noüe J, Laliberete´ G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254CrossRefGoogle Scholar
  40. De la Noüe J, Proulx D (1988) Biological tertiary treatment of urban wastewater by chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 29(2):356–365Google Scholar
  41. De la Noüe J, Chevalier P, Proulx D (1990) Effluent treatment with immobilized microalgae and cyanobacteria: a critical assessment. In: Vembuk TRD (ed) Wastewater treatment by immobilized cells. CRC Press, Boca Raton, pp 143–152Google Scholar
  42. De Morias MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in the photobioreactors. Biotechnol Lett 29(9):1349–1352. IncompleteCrossRefGoogle Scholar
  43. Deng X, Wilson DB (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol 56:276–279CrossRefPubMedPubMedCentralGoogle Scholar
  44. DeSiloniz MI, Balsalobre L, Alba C, Valderrama MJ, Peinado JM (2002) Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol 153:173–180CrossRefGoogle Scholar
  45. Doran MD, Boyle WC (1979) Phosphorus removal by activated algae. Water Res 13:805–812CrossRefGoogle Scholar
  46. Dubey SK, Dubey JS, Mehra S, Tiwar P (2011) Potential use of cyanobacterial sp. in bioremediation of industrial effluents. Afr J Biotechnol 10(7):1125–1132. IncompleteGoogle Scholar
  47. El-kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aqua Res 40(3):301–308CrossRefGoogle Scholar
  48. EPA (2002) Onsite wastewater treatment systems manual. EPA/625/R-00/008/2002. http://www.epa.gov/owmitnet/mtbfact.htm
  49. Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ (2017) A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 8013850:1–16CrossRefGoogle Scholar
  50. Fergusson JF, Jenkins D, Eastman J (1973) Calcium phosphate precipitation at slightly alkaline pH values. Water Pollut Cont 45(4):620–631Google Scholar
  51. Fergusson JF, McCarty PL (1971) Effects of carbonate and magnesium on calcium phosphate precipitation. Environ Sci Technol 5(6):534–540CrossRefGoogle Scholar
  52. Fernández FGA, Sevilla JMF, Grima EM (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Bio Technol 12(2):131–151CrossRefGoogle Scholar
  53. Figueira MMF, Volesky B, Azarian K, Ciminelli VST (1999) Multimetal biosorption in a column using Sargassum biomass. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century (part B): international biohydrometallurgy symposium-proceedings. Elsevier Science, Amsterdam/The Netherlands, pp 503–512CrossRefGoogle Scholar
  54. Fogg GE (1975) Algal cultures and phytoplankton ecology, 2nd edn. The university of Wisconsin press, WisconsinGoogle Scholar
  55. Foladori P, Petrini S, Nesseuzia M, Anderottola G (2018) Enhanced nitrogen removal and energy saving in a microalgal-bacterial consortium treating real municipal wastewater. Water Sci Technol 78:174–182PubMedPubMedCentralGoogle Scholar
  56. Fontes AG, Vargas MA, Moreno J, Guerrero MG, Losada M (1987) Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass 13:33–43CrossRefGoogle Scholar
  57. Garbisu C, Gil JM, Bazin MJ, Hall DO, Serra JL (1991) Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Appl Phycol 3:1–14CrossRefGoogle Scholar
  58. Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol 37:270–276Google Scholar
  59. Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232CrossRefGoogle Scholar
  60. Glazer AN (1994) Phycobiliproteins-a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112CrossRefGoogle Scholar
  61. Gomez MA, Gonzalez-Lopez J, Hontoria-Garcia E (2006) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater B80(1):69–80Google Scholar
  62. Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs scale-up considerations. Algal Res 16:167–176CrossRefGoogle Scholar
  63. Gray FN (2002) Water technology: an introduction for environmental scientists and engineers. Butterworth-Heinemann, Oxford, pp 35–80Google Scholar
  64. Gray NF (1989) Biology of wastewater treatment. Oxford Univ Press, Oxford, pp 1057–1179Google Scholar
  65. Gross M, Zhao X, Mascarenhas V, Wen Z (2016) Effects of the surface physic-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol Biofuels 9:38–52CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gude VG, Kokabian B, Gadhamshetty V (2013) Beneficial bioelectrochemical systems for energy, water, and biomass production. J Microb Biochem Technol S6:005Google Scholar
  67. Guihéneuf F, Khan A, Tran LSP (2016) Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci 7:400CrossRefPubMedPubMedCentralGoogle Scholar
  68. Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hall DO, Rao KK (1989) Immobilized photosynthetic membranes and cells for the production of fuel and chemicals. Chem Today 3:40–47Google Scholar
  70. Han T, Haifeng L, Shanshan M, Zhang Y, Zhidan L, Na D (2017) Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biol Eng 10(1):1–25Google Scholar
  71. NCBI (1995) Handbook N. Simple ncbi directoryGoogle Scholar
  72. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047CrossRefGoogle Scholar
  73. Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67:62–69CrossRefGoogle Scholar
  74. Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom. Phaeodactylum tricornutum. PLoS One 6:e28424CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology- from genetics to synthetic biology. Biotechnol Adv 33:1194–1203CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hoffman JP (2002) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763CrossRefGoogle Scholar
  77. Horan NJ (1990) Biological wastewater treatment systems. Theory and operation. John Wiley and Sons Ltd, West SussexGoogle Scholar
  78. Hurse JT, Connor AM (1999) Nitrogen removal from wastewater treatment lagoons. Water Sci Technol 39(6):191–198CrossRefGoogle Scholar
  79. Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Marine bioactive compounds. Springer, Boston, pp 55–98CrossRefGoogle Scholar
  80. Ioannou E, Roussis V (2009) Natural products from seaweeds. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 51–81CrossRefGoogle Scholar
  81. Ismail H, Azza AM, El-All ABD, Hassanein HAM (2013) Biological influence of some microorganisms on olive oil mill waste water. Egypt J Agric Res 91(1):1–9Google Scholar
  82. Jarvie HP, Neal C, Warwick A, White J, Neal M, Wickham HD, Hill LK, Andrews MC (2002) Phosphorus uptake into algal biofilms in a lowland chalk river. Sci Total Environ 282–283:353–373CrossRefGoogle Scholar
  83. Jenkins D, Richard M, Daigger G (2003) Manual on the causes and control of activated sludge bulking foaming and other solids separation problems, 3rd edn. Lewis publishers CRC press, Boca Raton, pp 236–305Google Scholar
  84. Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5:369–389CrossRefGoogle Scholar
  85. Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278CrossRefGoogle Scholar
  86. Jjemba PK (2004) Interaction of metals and metalloids with microorganisms in the environment (chapter 12). In: Jjemba PK (ed) Environ microbiol—principles and applications. Science Publishers, New Hampshire, pp 257–270Google Scholar
  87. Kim HW, Park S, Rittmann BE (2015) Multicomponent kinetic for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ Eng Res 20(4):347–355CrossRefGoogle Scholar
  88. Kocberber N, Donmez G (2007) Chromium (VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters. BioresourTechnol 98:2178–2183CrossRefGoogle Scholar
  89. Kris M (2007) Wastewater pollution in China. http://www.dbc.uci/wsustain/suscoasts/krismin.html
  90. Kujan P, Votruba J, Kamenik V (1995) Substrate-dependent bioaccumulation of cadmium by growing yeast Candida utilis. Folia Microbiol 40(3):288–292CrossRefGoogle Scholar
  91. Kumar SK, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae-a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  92. Laliberte G, Olguin EJ, Noue JD (1997) Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A (ed) Spirulina platensis. Physiology, cell biology and biotechnology. Taylor and Francis, London (UK), pp 59–73Google Scholar
  93. Laliberte G, Proulx D, De Pauw N, La Noue J (1994) Algal technology in waste water treatment. Adv Limnol 42:283–302Google Scholar
  94. Larsdotter K (2006) Microalgae for phosphorus removal from wastewater in a Nordic climate. A doctoral thesis from the school of biotechnology royal institute of technology, Stockholm Sweden ISBN: 91-7178-288-5Google Scholar
  95. Laurens LM, Chen-Glasser M, McMillan JD (2017) A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res 24:261–264CrossRefGoogle Scholar
  96. Lavoie A, De la Noüe J (1983) Harvesting microalgae with chitosan. J World Maricult Assoc 14:685–694CrossRefGoogle Scholar
  97. Leadbeater BSC, Callow ME (1992) Formation, composition and physiology of algal biofilms. In: Melo et al (eds) Biofilms science and technology. Kluwer Academic Publishers, Amsterdam Netherlands, pp 149–162CrossRefGoogle Scholar
  98. Li YX, Kim SK (2011) Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: an overview. Food Sci Biotechnol 20:1461–1466CrossRefGoogle Scholar
  99. Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. BioresourTechnol 101:7314–7322CrossRefGoogle Scholar
  100. Lloyd JR (2002) Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol Today 29:67–69Google Scholar
  101. Loukidou MX, Zouboulis AI (2005) Biosorption of toxic metals. Water Encyclopedia 2:68–74Google Scholar
  102. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278CrossRefPubMedPubMedCentralGoogle Scholar
  103. Marbelia L, Bilad HR, Passaris I, Discart V, Vandamme D, Benckels A, Mylaert K, Vankelecom IF (2014) Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresour Technol 163:228–235CrossRefPubMedPubMedCentralGoogle Scholar
  104. Markov SA, Bazin MJ, Hall DO (1995) Hydrogen, photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzym Microb Technol 17:306–310CrossRefGoogle Scholar
  105. Martin-Gonzalez A, Diaz S, Borniquel S, Gallego A, Gutierrez JC (2006) Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol 157:108–118CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  107. Maynard HE, Ouki SK, Williams SC (1999) Tertiary lagoons: a review of removal mechanisms and performance. Water Res 33:1–13CrossRefGoogle Scholar
  108. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152CrossRefPubMedPubMedCentralGoogle Scholar
  109. Mendis E, Kim SK (2011) Present and future prospects of seaweeds in developing functional foods. Adv Food Nutr Res 64:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  110. Menicucci JA (2010) Algal biofilms, microbial fuel cells, and implementation of state of-the art research into chemical and biological engineering laboratories. (PhD dissertation) Montana State University Bozeman MontanaGoogle Scholar
  111. Mesple FC, Casellas M, Troussellier, Bontoux J (1996) Modelling orthophosphate evolution in a high rate algal pond. Ecol Model 89(1-3):13–21CrossRefGoogle Scholar
  112. Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, Wlodkowic D, Morrison P, Roddick F, Spangenberg G, Lal B, Subudhi S, Mouradov A (2017) Applications of microalgal biofilms for bioenergy production and wastewater treatment. Biotechnol Biofuels 10:120–129CrossRefPubMedPubMedCentralGoogle Scholar
  113. Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7:42CrossRefPubMedPubMedCentralGoogle Scholar
  114. Moheimani NR (2005) The culture of Coccolithophorid algae for carbon dioxide remediation. (PhD dissertation) Murdoch University Murdoch (Australia)Google Scholar
  115. Monteiro CM, Castro PML, Malcata FX (2011) Biosorption of zinc ions from aqueous solutions by the microalga Scenedesmus obliquus. Environ Chem Lett 9:169–176CrossRefGoogle Scholar
  116. Morales J, De la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquac Eng 4:257–270CrossRefGoogle Scholar
  117. Mostert ES, Grobbelaar JU (1987) The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13:219–233CrossRefGoogle Scholar
  118. Mouchet P (1986) Algal reactions to mineral and organic micropollutants, ecological consequences and possibilities for industrial scale application; a review. Water Res 20:399–412CrossRefGoogle Scholar
  119. Moutin T, Gal JY, Halouani HE, Picot B, Bontoux (1992) Decrease of phosphate concentration inahighrate pond by precipitation of calcium phosphate:theoretical and experimental results. Water Res 26(11):1445–1450CrossRefGoogle Scholar
  120. Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284CrossRefGoogle Scholar
  121. Okoh AT, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving water sheds. Afr J Biotechnol 6(25):2932–2944CrossRefGoogle Scholar
  122. Oliver RL, Ganf GG (2000) In: Whitton BA, Potts M (eds) Freshwater blooms, in the ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 149–194Google Scholar
  123. Oswald WJ (1988) Microalgae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, New York, pp 357–394Google Scholar
  124. Otadi M, Poormohamadian S, Zabihi F, Goharrokhi M (2011) Microbial fuel cell production with alga. World Appl Sci 14:91–95Google Scholar
  125. Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80Google Scholar
  126. Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25(19):1657–1659CrossRefPubMedPubMedCentralGoogle Scholar
  127. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25CrossRefPubMedPubMedCentralGoogle Scholar
  128. Proulx D, LessardP DLNJ (1994) Tertiary treatment of secondarily treated urban wastewater by intensive culture of Phormidium bohneri. Environ Technol 15(5):449–458CrossRefGoogle Scholar
  129. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648CrossRefPubMedPubMedCentralGoogle Scholar
  130. Quijano G, Arcila JS, Buitorn G (2017) Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv 35:772–781CrossRefPubMedPubMedCentralGoogle Scholar
  131. Rai LC, Mallich N (1992) Removal and assessment of toxicity of cu & Fe to Anabaena doliolum & Chlorella vulgaris using free and immobilized cells. World J Microbial Technol 8:110–114CrossRefGoogle Scholar
  132. Rajamani S, Siripornadulsil S, Falcao V, Torres MA, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. In: León, R., Galván, Cejudo, a., Fernández, E. (Eds.). Transgenic microalgae as green cell factories. Adv Exp Med Biol 616:99–107CrossRefPubMedPubMedCentralGoogle Scholar
  133. Rajasulochana AP, Dhamotharan R, Krishnamoorthy P, Subbiah M (2009) Antibacterial activity of the extracts of marine red and brown. J Am Sci 5(9):17–22Google Scholar
  134. Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12(2):153–164CrossRefGoogle Scholar
  135. Rawat I, Kumar R, Bux F (2013) Phycoremediation by high-rate algal ponds (HRAPs). In: Bux F (ed) Biotechnological applications of microalgae: biodiesel and value-added products. CRC Press, Boca Raton, pp 179–199CrossRefGoogle Scholar
  136. Rehnstam Holm AS, Godhe A (2003) Genetic engineering of algal species. Eolss Publishers, Oxford, UK, pp 1–27Google Scholar
  137. Romay C, González R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216CrossRefPubMedPubMedCentralGoogle Scholar
  138. Romera E, Gonzalez F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235CrossRefPubMedPubMedCentralGoogle Scholar
  139. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436CrossRefPubMedPubMedCentralGoogle Scholar
  140. Rybicki S (1997) Advanced wastewater treatment: phosphorus removal from wastewater. Report no. 1. Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  141. Saba B, Christy AD, Yu Z, Co AC (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energ Rev 73:75–84CrossRefGoogle Scholar
  142. Sabalowsky AR (1999) An investigation of the feasibility of nitrification and denitrification of a complex industrial wastewater with high seasonal temperatures. Masters thesis from Virginia polytechnic institute and state university BlacksburgGoogle Scholar
  143. Salama Y, Chennaoui M, Sylla A, Mountadar M, Riha M, Assobhei O (2014) Review of wastewater treatment and reuse in the Morocco: aspects and perspectives. Europ Cent Res Train Develop UK 2(1):9–25Google Scholar
  144. Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138CrossRefGoogle Scholar
  145. Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ions removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468CrossRefGoogle Scholar
  146. Sebastian S, Nair KVK (1984) Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut 34(A):197–206CrossRefGoogle Scholar
  147. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  148. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610CrossRefGoogle Scholar
  149. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production - a review. Renew Sust Energ Rev 16(4):2347–2353CrossRefGoogle Scholar
  150. Song Y, Hahn HH, Hoffmann E (2002) Effects of solution conditions on the precipitation of phosphate for recovery: a thermodynamic evaluation. Chemosphere 48(10):1029–1034CrossRefGoogle Scholar
  151. Soni RA, Sudhakar K, Rana R (2016) Biophotovoltaics and biohydrogen through artificial photosynthesis: an overview. Int J Environ Sust Dev 15:313–325CrossRefGoogle Scholar
  152. Su HN, Xie BB, Chen XL, Wang JX, Zhang XY, Cheng Z, Zhang YZ (2010) Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J Appl Phycol 22:65–70CrossRefGoogle Scholar
  153. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresour Technol 99:6017–6027CrossRefGoogle Scholar
  154. Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107(1):145–151CrossRefGoogle Scholar
  155. Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment disposal reuse, 4th edn. Metcalf and Eddy, Inc., McGrwa-Hill Books Company, New York. isbn:0-07-041878-0Google Scholar
  156. Tebbutt THY (1983) Principles of water quality control. Pergammon Press, Oxford USA, p 235Google Scholar
  157. Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. BioresourTechnol 40:183–187CrossRefGoogle Scholar
  158. Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028CrossRefPubMedPubMedCentralGoogle Scholar
  159. Van der Steen P, Brenner A, Shabtai Y, Oron G (2000) The effect of environmental conditions on FC decay in post-treatment of UASB reactor effluent. Water Sci Technol 42:111–118CrossRefGoogle Scholar
  160. VanLarsdrecht MC (2005) Role of biological processes in phosphate recovery. Natural History Museum, LondonGoogle Scholar
  161. Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sust Energ Rev 16(7):5443–5550CrossRefGoogle Scholar
  162. Vela JC, Selles S, Pedreno JN, Bustamante MA, Mataic J, Gomez I (2006) Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Manag 26(9):946–952CrossRefGoogle Scholar
  163. VenkataMohan S, Rohit MV, Chiranjeevi P, Chandra R, Navneeth B (2015) Heterotrophic microalgae cultivation to synergise biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178CrossRefGoogle Scholar
  164. Verma ML, Kumar S, Jeslin J, Dubey NK (2019) Microbial production of biopolymers with potential biotechnological applications. Biopolymer-based formulations: biomedical and food applications. Elsevier Publisher, Amsterdam, pp 1–43Google Scholar
  165. Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol 30:79–81CrossRefPubMedPubMedCentralGoogle Scholar
  166. Wang SK, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14(6):550–559CrossRefGoogle Scholar
  167. WHO (2004) Guidelines for drinking water quality, vol 1. World health organization press, Geneva Switzerland, pp 1–631Google Scholar
  168. Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21CrossRefGoogle Scholar
  169. Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol Vasc S 29:497–511CrossRefGoogle Scholar
  170. Wu YC, Wanga Z, Zheng Y, Xiao Y, Yang Z, Zhao F (2014) Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy 116:86–90CrossRefGoogle Scholar
  171. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  172. Yanna WHH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211Google Scholar
  173. Yilmazer P, Saracoglu N (2009) Bioaccumulation and biosorption of copper(II) and chromium(III) from aqueous solutions by Pichia stipitis yeast. J ChemTechnol Biotechnol 84:604–610CrossRefGoogle Scholar
  174. Yoshida N, Ishii K, Okuno T, Tanaka K (2006) Isolation and characterization of a cyanophage infecting the toxic Cyanobacterium microcystis aeruginosa. Curr Microbiol 52(6):460–463CrossRefPubMedPubMedCentralGoogle Scholar
  175. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Salleh MAM (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zhang C, Li X, Kim SK (2012) Application of marine biomaterials for nutraceuticals and functional foods. Food Sci Biotechnol 21:625–631CrossRefGoogle Scholar
  177. Zhu W, Ooi VE, Chan PK, Ang POJ (2003) Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol 81:25–33CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Meenu Thakur
    • 1
  • Sakshi Bajaal
    • 1
  • Neha Rana
    • 1
  • Madan L. Verma
    • 2
    • 3
  1. 1.Shoolini Institute of Life Sciences and Business Management, Affiliated to Himachal Pradesh UniversitySolanIndia
  2. 2.Centre for Chemistry and BiotechnologyDeakin UniversityVictoriaAustralia
  3. 3.Department of Biotechnology, School of Basic Sciences, Indian Institute of Information TechnologyUnaIndia

Personalised recommendations