Advertisement

Potential of Thallophytes in Degradation of Dyes in Industrial Effluents

  • Saroj Kumar Pradhan
  • Rohita Singla
Chapter
  • 15 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)

Abstract

Diverse groups of microorganisms have inhabited this earth, which use different types of sources for energy and growth. Industries revolutionize the lifestyle of humankind, which affects negatively the ecosystem. Synthetic dyes impart fabulous colors to cloth, food, paper, and cosmetics. Due to their xenobiotic nature, they are mostly insurmountable for degradation and also toxic. Most of them are washed off during the various processes and mixed in the industrial effluents. Microorganisms have enzymatic system for the decolorization of dyes or simply they can adsorb them on their surface. Several genera of algae, bacteria, and fungi have developed a system to use these unwanted compounds in the water. They can also biotransform or degrade them into non-toxic products. Degradation of the dyes depends upon their toxicity and chemical structure and the type of strain used. Some species were found to be efficient against a variety of dyes at a high concentration level. The present review describes the diversity of three genera Chlorella, Pseudomonas, and Aspergillus of thallophytes for the degradation and decolorization of various dyes in industrial effluents and also the use of integrated approach of different consortia or other treatments for their application in wastewater treatment plants.

Keywords

Xenobiotic compounds Industrial effluents Azo dyes Decolorization Chlorella Pseudomonas Aspergillus 

References

  1. Abd El-Rahim WM, Moawad H, Abdel Azeiz AZ et al (2017) Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. J Biotechnol 260:11–17CrossRefGoogle Scholar
  2. Abdallah R, Taha S (2012) Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chem Eng J 195-196:69–76CrossRefGoogle Scholar
  3. Abdel Ghany TM, Al Abboud MA (2014) Capacity of growing, live and dead fungal biomass for safranin dye decolourization and their impact on fungal metabolites. Aus J Basic Appl Sci 8:489–499Google Scholar
  4. Acuner E, Dilek F (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–631CrossRefGoogle Scholar
  5. Adedayo O, Javadpour S, Taylor C et al (2004) Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant. World J Microbiol Biotechnol 20:545–550CrossRefGoogle Scholar
  6. Afzal Khan S, Hamayun M, Ahmed S (2006) Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzym Microb Technol 38:10–13CrossRefGoogle Scholar
  7. Akar ST, Akar T, Cabu A (2009) Decolorization of a textile dye, RR198 by Aspergillus parasiticus fungal biosorbent. J Chem Eng 2:399–405Google Scholar
  8. Aksu Z, Karabayır G (2008) Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresour Technol 99:7730–7741CrossRefGoogle Scholar
  9. Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347–1361CrossRefGoogle Scholar
  10. Ali NF, El-Mohamedy RSR (2012) Microbial decolourization of textile waste water. J Saudi Chem Soc 16(2):117–123CrossRefGoogle Scholar
  11. Ali N, Hameed A, Ahmed S, Khan AG (2007a) Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J Microbiol Biotechnol 24(7):1067–1072CrossRefGoogle Scholar
  12. Ali N, Ikramullah, Lutfullah G et al (2007b) Decolorization of acid red 151 by Aspergillus niger SA1 under different physicochemical conditions. World J Microbiol Biotechnol 24:1099–1105CrossRefGoogle Scholar
  13. Ali N, Hameed A, Ahmed S (2010) Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. J Microbiol 4:907–915Google Scholar
  14. Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322CrossRefGoogle Scholar
  15. Álvarez MS, Rodríguez A, Sanromán MÁ et al (2015) Simultaneous biotreatment of polycyclic aromatic hydrocarbons and dyes in a one-step bioreaction by an acclimated Pseudomonas strain. Bioresour Technol 198:181–188CrossRefGoogle Scholar
  16. Ameen F, Alshehrei F (2017) Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent. Ann Microbiol 67:303–312CrossRefGoogle Scholar
  17. Anastasi A, Prigione V, Casieri L et al (2009) Decolourisation of model and industrial dyes by mitosporic fungi in different culture conditions. World J Microbiol Biotechnol 25:1363–1374CrossRefGoogle Scholar
  18. Andleeb S, Atiq N, Robson GD, Ahmed S (2012) An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ Sci Pollut Res 19(5):1728–1737CrossRefGoogle Scholar
  19. Arunarani A, Chandran P, Ranganathan BV et al (2013) Bioremoval of basic violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics. Colloids Surf B: Biointerfaces 102:379–384CrossRefGoogle Scholar
  20. Asgher M (2012) Biosorption of reactive dyes: a review. Water Air Soil Pollut 223:2417.  https://doi.org/10.1007/s11270-011-1034-zCrossRefGoogle Scholar
  21. Banat IM, Nigam P, McMullan G et al (1997) The isolation of thermophilic bacterial cultures capable of textile dyes decolorization. Environ Int 23:547–551CrossRefGoogle Scholar
  22. Ben Mansour H, Corroler D, Barillier D et al (2007) Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol 45:1670–1677CrossRefGoogle Scholar
  23. Ben Mansour H, Corroler D, Barillier D et al (2009a) Influence of the chemical structure on the biodegradability of acids yellow 17, violet 7 and orange 52 by Pseudomonas putida. Ann Microbiol 59:9–15CrossRefGoogle Scholar
  24. Ben Mansour H, Mosrati R, Corroler D et al (2009b) In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2: correlation with chemical structures. Environ Toxicol Pharmacol 27:231–236CrossRefGoogle Scholar
  25. Benghazi L, Record E, Suárez A, Gomez-Vidal JA, Martínez J, de la Rubia T (2013) Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 30(1):201–211CrossRefGoogle Scholar
  26. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bidisha C, Sreeranjani R, Shaik A et al (2006) Bioaccumulation and biosorption of drimarene red dye by Aspergillus foetidus. Int J Environ Pollut 28:517–533CrossRefGoogle Scholar
  28. Bouras HD, Yeddou AR, Bouras N (2017) Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: kinetics, equilibrium and thermodynamic studies. J Taiwan Inst Chem E 80:915–923CrossRefGoogle Scholar
  29. Bumpus JA (1995) Microbial degradation of azo dyes. In: Singh VP (ed) Biotransformations: microbial degradation of health risk compounds. Elsevier Science, Amsterdam, pp 157–176CrossRefGoogle Scholar
  30. Bumpus JA, Aust SD (1987) Biodegradation of environmental pollutants by the white rot fungus Phanerochaete chrysosporium: involvement of the lignin degrading system. Bio Essays 6:166–170Google Scholar
  31. Carmen Z, Daniel S (2012) Textile organic dyes—characteristics, polluting effects and separation/elimination procedures from industrial effluents—a critical overview, organic pollutants ten years after the Stockholm convention, Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng, IntechOpen, doi: 10.5772/32373. Available from: https://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update/textile-organic-dyes-characteristics-polluting-effects-and-separation-elimination-procedures-from-in
  32. Chang JS, Chou C, Chen SY (2001a) Decolorization of azo dyes with immobilized Pseudomonas luteola. Process Biochem 36:757–763CrossRefGoogle Scholar
  33. Chang JS, Chou C, Lin YC et al (2001b) Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850CrossRefGoogle Scholar
  34. Chao WL, Lee SL (1994) Decoloration of azo dyes by three white rot fungi: influence of carbon source. World J Microbiol Biotechnol 10:556–559CrossRefGoogle Scholar
  35. Chaturvedi V, Bhange K, Bhatt R et al (2013) Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability to metabolize dye adsorbed chicken feathers. J Environ Chem Eng 1:1205–1213CrossRefGoogle Scholar
  36. Chen BY (2002) Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem 38:437–446CrossRefGoogle Scholar
  37. Chen BY (2006) Toxicity assessment of aromatic amines to Pseudomonas luteola: chemostat pulse technique and dose–response analysis. Process Biochem 41:1529–1538CrossRefGoogle Scholar
  38. Chen JP, Lin YS (2007) Decolorization of azo dye by immobilized Pseudomonas luteola entrapped in alginate–silicate sol–gel beads. Process Biochem 42:934–942CrossRefGoogle Scholar
  39. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH—dependent flavoprotein. Microbiology 151:1433–1441CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chen CC, Liao HJ, Cheng CY et al (2007) Biodegradation of Crystal Violet by Pseudomonas putida. Biotechnol Lett 29:391–396CrossRefGoogle Scholar
  41. Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377CrossRefPubMedPubMedCentralGoogle Scholar
  42. Chu WL, See YC, Phang SM (2009) Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J Appl Phycol 21:641.  https://doi.org/10.1007/s10811-008-9396-3CrossRefGoogle Scholar
  43. Conatao M, Corso CR (1996) Studies of adsorptive interaction between Aspergillus niger and the reactive azo dye procion blue MX-G. Ecletica Quim 21:97–102Google Scholar
  44. Copete-Pertuz LS, Alandete-Novoa F, al PJ (2019) Enhancement of ligninolytic enzymes production and decolourising activity in Leptosphaerulina sp. by co–cultivation with Trichoderma viride and Aspergillus terreus. Sci Total Environ 646:1536–1545CrossRefGoogle Scholar
  45. Coughlin MF, Kinkle BK, Bishop PL (2003) High performance degradation of azo dye acid orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains. Water Res 37:2757–2763CrossRefGoogle Scholar
  46. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118CrossRefPubMedPubMedCentralGoogle Scholar
  47. Daneshvar N, Khataee AR, Rasoulifard MH et al (2007) Biodegradation of dye solution containing malachite green: optimization of effective parameters using Taguchi method. J Hazard Mater 143:214–219CrossRefGoogle Scholar
  48. Daneshvar E, Antikainen L, Koutra E et al (2018) Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol 255:104–110CrossRefGoogle Scholar
  49. de Andrade CJ, de Andrade LM (2017) An overview on the application of genus Chlorella in biotechnological processesGoogle Scholar
  50. Deepa K, Chandran P, Sudheer Khan S (2013) Bioremoval of Direct Red from aqueous solution by Pseudomonas putida and its adsorption isotherms and kinetics. Ecol Eng 58:207–213CrossRefGoogle Scholar
  51. Deng S, Yu G, Ting YP (2005) Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf B: Biointerfaces 44:179–186CrossRefGoogle Scholar
  52. Dilek FB, Taplamacioglu HM, Tarlan E (1999) Colour and AOX removal from pulping effluents by algae. Appl Microbiol Biotechnol 52:585–591CrossRefGoogle Scholar
  53. Du LN, Yang YY, Li G et al (2010) Optimization of heavy metal-containing dye Acid Black 172 decolorization by Pseudomonas sp. DY1 using statistical designs. Int Biodeterior Biodegrad 64:566–573CrossRefGoogle Scholar
  54. Du LN, Wang B, Li G et al (2012) Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: kinetics and sorption mechanisms. J Hazard Mater 205-206:47–54CrossRefGoogle Scholar
  55. El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308CrossRefGoogle Scholar
  56. El-Naggar MA, El-Aasar SA, Barakat KI (2004) Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa. Water Res 38:4313–4322CrossRefGoogle Scholar
  57. El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeterior Biodegradation 63:699–704CrossRefGoogle Scholar
  58. Esmaeili A, Kalantari M (2011) Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus. World J Microbiol Biotechnol 28:1125–1131CrossRefGoogle Scholar
  59. Fazal T, Mushtaq A, Rehman F et al (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sustain Energy Rev 82:3107–3126CrossRefGoogle Scholar
  60. Fu YZ, Viraraghavan T (2000) Removal of a dye from aqueous solution by the fungus Aspergillus niger. Water Qual Res J Can 35:95–111CrossRefGoogle Scholar
  61. Fu Y, Viraraghavan T (2002a) Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv Environ Res 7:239–247CrossRefGoogle Scholar
  62. Fu Y, Viraraghavan T (2002b) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145CrossRefGoogle Scholar
  63. Fu Y, Viraraghavan T (2003) Column studies for biosorption of dyes from aqueous solutions on immobilized Aspergillus niger fungal biomass. Water South Africa 29:465–472Google Scholar
  64. Gao QT, Wong YS, Tam NFY (2011) Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris. Bioresour Technol 102:10230–10238CrossRefGoogle Scholar
  65. Godheja J, Shekhar SK, Siddiqui SA et al (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anal Toxicol 6:5.  https://doi.org/10.4172/2161-0525.1000392CrossRefGoogle Scholar
  66. Gomaa OM, Momtaz OA, Kareem HAE et al (2011) Isolation, identification, and biochemical characterization of a brown rot fungus capable of textile dye decolorization. World J Microbiol Biotechnol 27:1641–1648CrossRefGoogle Scholar
  67. Gomaa OM, Selim NS, Wee J et al (2017) RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger. Fungal Genet Biol 105:1–7CrossRefGoogle Scholar
  68. Gopinath KP, Kathiravan MN, Srinivasan R et al (2011) Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol 102:3687–3693CrossRefGoogle Scholar
  69. Goszczynski S, Paszczynski A, Pasti-Grigsby MB et al (1994) New pathway for degradation of sulfonated azo dyes by microbial peroxidases of by Phanerochaete chrysosporium and Streptomyces chromofuscus. J Bacteriol 176:1339–1347CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hafeez F, Farheen H, Mahmood F et al (2018) Isolation and characterization of a lead (Pb) tolerant Pseudomonas aeruginosa strain HF5 for decolorization of reactive red-120 and other azo dyes. Ann Microbiol 68:943–952CrossRefGoogle Scholar
  71. Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37:315–377CrossRefGoogle Scholar
  72. Hanan HO (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 11:1310–1316CrossRefGoogle Scholar
  73. Hasanin MS, Darwesh OM, Matter IA et al (2019) Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential. Biocatal Agri Biotechnol 17:160–167CrossRefGoogle Scholar
  74. Hashem RA, Samir R, Essam TM et al (2018) Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express 8:83.  https://doi.org/10.1186/s13568-018-0616-1CrossRefPubMedPubMedCentralGoogle Scholar
  75. He X, Song C, Li Y et al (2018) Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotox Environ Safety 150:232–239CrossRefGoogle Scholar
  76. Hedayati MT, Pasqualotto AC, Warn PA et al (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692CrossRefGoogle Scholar
  77. Heimann K, Huerlimann R (2015) Microalgal classification: major classes and genera of commercial microalgal species. In: Se-Kwon K (ed) Handbook of marine microalgae: biotechnolgy advances. Academic Press, London, UK, pp 25–41CrossRefGoogle Scholar
  78. Hernández-Zamora M, Perales-Vela HV, Flores-Ortíz CM et al (2014) Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicol Environ Saf 108:72–77CrossRefGoogle Scholar
  79. Hernández-Zamora M, Cristiani-Urbina E, Martínez-Jerónimo F et al (2015) Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environ Sci Pollut Res Int 22:10811–10823CrossRefGoogle Scholar
  80. Horník M, Šuňovská A, Partelová D et al (2013) Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa. Chem Pap 67:254–264CrossRefGoogle Scholar
  81. Houbraken J, Samson RA, Yilmaz N (2016) Taxonomy of Aspergillus, Penicillium and Talaromyces and its significance for biotechnology. In de Vries RP, Gelber IB, Andersen MR (eds), Aspergillus and Penicillium in the post-genomic era (pp. 1-16). Caister, UK, Academic PressGoogle Scholar
  82. Hsueh CC, Chen BY (2007) Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater 141:842–849CrossRefGoogle Scholar
  83. Hsueh CC, Chen BY (2008) Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J Hazard Mater 154:703–710CrossRefGoogle Scholar
  84. Hu TL (1994) Decolourization of reactive azo dyes by transformation of Pseudomonas luteola. Bioresour Technol 49:47–51CrossRefGoogle Scholar
  85. Hu TL (1996) Removal of reactive dyes from aqueous solution by different bacterial genera. Water Sci Technol 34:89–95Google Scholar
  86. Hu TL (1998) Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci Technol 38:229–306CrossRefGoogle Scholar
  87. Huan M, Lian-Tai L, Cai-Fang Y et al (2010) Biodegradation of malachite green by strain Pseudomonas sp. K9 and cloning of the tmr2 gene associated with an ISPpu12. World J Microbiol Biotechnol 27:1323–1329CrossRefGoogle Scholar
  88. Huang H, Wu K, Khan A et al (2016a) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378CrossRefGoogle Scholar
  89. Huang J, Liu D, Lu J et al (2016b) Biosorption of reactive black 5 by modified Aspergillus versicolor biomass: kinetics, capacity and mechanism studies. Colloids Surf A Physicochem Eng Aspect 492:242–248CrossRefGoogle Scholar
  90. Idaka E, Ogawa T, Horitsu H (1987a) Reductive metabolism of aminoazobenzenes by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:100–107CrossRefGoogle Scholar
  91. Idaka E, Ogawa T, Horitsu H (1987b) Oxidative pathway after reduction of p-aminoazobenzene by Pseudomonas cepacia. Bull Environ Contam Toxicol 39:108–113CrossRefGoogle Scholar
  92. Iqbal A, Sabar S, Mun-Yee MK et al (2018) Pseudomonas aeruginosa USM-AR2/SiO 2 biosorbent for the adsorption of methylene blue. J Environ Chem Eng 6:4908–4916CrossRefGoogle Scholar
  93. Isaac P, Martínez FL, Bourguignon N et al (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegradation 101:23–31CrossRefGoogle Scholar
  94. Işik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192CrossRefGoogle Scholar
  95. Izmalkova TY, Sazonova OI, Nagornih MO, Sokolov SL, Kosheleva IA, Boronin AM (2013) The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 164(3):244–253CrossRefGoogle Scholar
  96. Jin X, Ning Y (2013) Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J Hazard Mater 262:870–877CrossRefGoogle Scholar
  97. Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278CrossRefGoogle Scholar
  98. Joe J, Kothari RK, Raval CM, Kothari CR (2011) Decolourization of textile dye Remazol black B by Pseudomonas aeruginosa CR-25 isolated from the common effluent treatment plant. J Bioremed Biodegrade 2:118.  https://doi.org/10.4172/2155-6199.1000118CrossRefGoogle Scholar
  99. Kadam AA, Telke AA, Jagtap SS et al (2011) Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation. J Hazard Mater 189:486–494CrossRefGoogle Scholar
  100. Kalme S, Ghodake G, Govindwar S (2007a) Red HE7B degradation using desulfonation by Pseudomonas desmolyticum NCIM 2112. Int Biodeterior Biodegrad 60:327–333CrossRefGoogle Scholar
  101. Kalme SD, Parshetti GK, Jadhav SU et al (2007b) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410CrossRefGoogle Scholar
  102. Kalme S, Jadhav S, Jadhav M et al (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym Microb Technol 44:65–71CrossRefGoogle Scholar
  103. Kalpana VN, Kataru BAS, Sravani N et al (2018a) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. Open Nano 3:48–55Google Scholar
  104. Kalpana VN, Kataru BAS, Sravani N (2018b) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55CrossRefGoogle Scholar
  105. Kalyani DC, Patil PS, Jadhav JP et al (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641CrossRefGoogle Scholar
  106. Kalyani DC, Telke AA, Jadhav JP et al (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742CrossRefGoogle Scholar
  107. Kalyani DC, Phugare SS, Shedbalkar UU et al (2011) Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization. Ann Microbiol 61:483–491CrossRefGoogle Scholar
  108. Kalyani DC, Telke AA, Surwase SN et al (2012) Effectual decolorization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Techn Environ Policy 14:989–1001CrossRefGoogle Scholar
  109. Kang Y, Xu X, Pan H, Tian J, Tang W, Liu S (2017) Decolorization of mordant yellow 1 using. TS-A CGMCC 12964 by biosorption and biodegradation. Bioengineered 9(1):222–232CrossRefGoogle Scholar
  110. Kanhere J, Gopinathan R, Banerjee J (2014) Cytotoxicity and genotoxicity of malachite green on non-target aquatic organisms: Chlorella pyrenoidosa and Daphnia magna. Water Air Soil Pollut 225:2134.  https://doi.org/10.1007/s11270-014-2134-3CrossRefGoogle Scholar
  111. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697CrossRefGoogle Scholar
  112. Kaushik P, Malik A (2010) Effect of nutritional conditions on dye removal from textile effluent by Aspergillus lentulus. World J Microbiol Biotechnol 26(11):1957–1964CrossRefGoogle Scholar
  113. Kaushik P, Malik A (2011) Process optimization for efficient dye removal by Aspergillus lentulus FJ172995. J Hazard Mater 185(2–3):837–843CrossRefGoogle Scholar
  114. Keck A, Klein J, Kudlich M et al (1997) Reduction of azo dyes by redox mediators originating in the naphthalene sulfonic acid degradation pathway of Sphingomonas ssp. Strain BN6. Appl Environ Microbiol 63:3684–3690CrossRefPubMedPubMedCentralGoogle Scholar
  115. Khalaf MA (2008) Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour Technol 99:6631–6634CrossRefGoogle Scholar
  116. Khambhaty Y, Mody K, Basha S (2012) Efficient removal of Brilliant Blue G (BBG) from aqueous solutions by marine Aspergillus wentii: kinetics, equilibrium and process design. Ecol Eng 41:74–83CrossRefGoogle Scholar
  117. Khan Z, Jain K, Soni A et al (2014) Microaerophilic degradation of sulphonated azo dye- Reactive Red 195 by bacterial consortium AR1 through co-metabolism. Int Biodeterior Biodegradation 94:167–175CrossRefGoogle Scholar
  118. Knapp JS, Newby PS (1999) The decolourisation of a chemical industry effluent by white rot fungi. Water Res 33:575–577CrossRefGoogle Scholar
  119. Kong J, Wang H, Liang L et al (2017) Phenanthrene degradation by the bacterium Pseudomonas stutzeri JP1 under low oxygen condition. Int Biodeterior Biodegradation 123:121–126CrossRefGoogle Scholar
  120. Kousha M, Farhadian O, Dorafshan S et al (2013) Optimization of malachite green biosorption by green microalgae—Scenedesmus quadricauda and Chlorella vulgaris: application of response surface methodology. J Taiwan Inst Chemical E 44:291–294CrossRefGoogle Scholar
  121. Kuddus M, Joseph B, Wasudev Ramteke P (2013) Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents. Biocat Agri Biotechnol 2:333–338CrossRefGoogle Scholar
  122. Kumar Garg S, Tripathi M, Singh SK et al (2012) Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int Biodeterior Biodegrad 74:24–35CrossRefGoogle Scholar
  123. Kumar CG, Mongolla P, Sheik AB et al (2011) Decolorization and biotransformation of triphenylmethane dye, methyl violet, by Aspergillus sp. isolated from Ladakh, India. J Microbiol Biotechnol 21:267–273PubMedGoogle Scholar
  124. Kumar CG, Mongolla P, Joseph J, Sarma VUM (2012) Decolorization and biodegradation of triphenylmethane dye, brilliant green, by Aspergillus sp. isolated from Ladakh, India. Process Biochem 47(9):1388–1394CrossRefGoogle Scholar
  125. Kumar R, Kaur J, Jain S, Kumar A (2016) Optimization of laccase production from Aspergillus flavus by design of experiment technique: partial purification and characterization. J Genet Eng Biotechnol 14(1):125–131CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kuppusamy S, Sethurajan M, Kadarkarai M et al (2017) Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. J Environ Chem Eng 5:716–724CrossRefGoogle Scholar
  127. Lebron YAR, Moreira VR, Santos LVS et al (2018) Remediation of methylene blue from aqueous solution by Chlorella pyrenoidosa and Spirulina maxima biosorption: equilibrium, kinetics, thermodynamics and optimization studies. J Environ Chem Eng 6:6680–6690CrossRefGoogle Scholar
  128. Li L, Hong Q, Yan X et al (2009) Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene. Biodegradation 20:769–776CrossRefGoogle Scholar
  129. Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322CrossRefGoogle Scholar
  130. Lin YH, Leu JY (2008) Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem Eng J 39:457–467CrossRefGoogle Scholar
  131. Lin SF, Yu P, Lin YM (2004) Study on decolorization of malachite green by a Pseudomonas aeruginosa. J Fujian Norm Univ 20:72–75Google Scholar
  132. Lin J, Zhang X, Li Z et al (2010) Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresour Technol 101:34–40CrossRefGoogle Scholar
  133. Liu C, You Y, Zhao R et al (2017) Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicol Environ Saf 145:8–15CrossRefGoogle Scholar
  134. Lodato A, Alfieri F, Olivieri G et al (2007) Azo-dye conversion by means of Pseudomonas sp. OX1. Enzym Microb Technol 41:646–652CrossRefGoogle Scholar
  135. Logroño W, Pérez M, Urquizo G et al (2017) Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere 176:378–388CrossRefGoogle Scholar
  136. Lu T, Zhang Q, Yao S (2017) Efficient decolorization of dye-containing wastewater using mycelial pellets formed of marine-derived Aspergillus niger. Chin J Chem Eng 25:330–337CrossRefGoogle Scholar
  137. Luan TG, Jin J, Chan SMN et al (2006) Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochem 41:1560–1565CrossRefGoogle Scholar
  138. Mahmoud MS, Mostafa MK, Mohamed SA (2017) Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. J Environ Chem Eng 5:547–554CrossRefGoogle Scholar
  139. Malla FA, Khan SA, Rashmi et al (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349CrossRefGoogle Scholar
  140. Mangwani N, Shukla SK, Rao TS (2014) Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B: Biointerfaces 114:301–309CrossRefGoogle Scholar
  141. Maqbool Z, Hussain S, Ahmad T et al (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res 23:11224–11239CrossRefGoogle Scholar
  142. Mathur M, Gola D, Panja R, Malik A, Ahammad SZ (2018) Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption. Environ Sci Pollut Res 25(1):345–352CrossRefGoogle Scholar
  143. McMullan G, Meehan C, Conneely A et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87CrossRefGoogle Scholar
  144. Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50CrossRefGoogle Scholar
  145. Mishra S, Maiti A (2018) Optimization of process parameters to enhance the bio-decolorization of Reactive Red 21 by Pseudomonas aeruginosa 23N1. Int J Environ Sci Technol 16:6685–6698.  https://doi.org/10.1007/s13762-018-2023-1CrossRefGoogle Scholar
  146. Mohan SV, Sistla S, Guru RK et al (2003) Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation. Waste Manag 23:167–171CrossRefGoogle Scholar
  147. Moharikar A, Purohit HJ (2003) Specific ratio and survival of Pseudomonas CF600 as co-culture for phenol degradation in continuous cultivation. Int Biodeterior Biodegrad 52:255–260CrossRefGoogle Scholar
  148. Munoza R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815CrossRefGoogle Scholar
  149. Muthu Kumara Pandian A, Karthikeyan C, Rajasimman M (2016) Isotherm and kinetic studies on nano-sorption of malachite green onto Aspergillus flavus mediated synthesis of silver nano particles. Environ Nanotechnol Monitor Manag 6:139–151CrossRefGoogle Scholar
  150. Nachiyar CV, Rajkumar GS (2003) Degradation of a tannery and textile dye, Navitan Fast Blue S5R by Pseudomonas aeruginosa. World J Microbiol Biotechnol 19:609–614CrossRefGoogle Scholar
  151. Nachiyar CV, Rajkumar GS (2004) Mechanism of Navitan fast Blue S5R degradation by Pseudomonas aeruginosa. Chemosphere 57:165–169CrossRefGoogle Scholar
  152. Nachiyar CV, Rajkumar GS (2005) Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzym Microb Technol 36:503–509CrossRefGoogle Scholar
  153. Nachiyar CV, Vijayalakshmi K, Muralidharan D et al (2007) Mineralization of metanilic acid by Pseudomonas aeruginosa CLRI BL22. World J Microbiol Biotechnol 23:1733–1738CrossRefGoogle Scholar
  154. Nakanishi M, Yatome C, Ishida N et al (2001) Putative ACP phosphodiesterase gene encodes an azoreductase. J Biol Chem 49:46394–46399CrossRefGoogle Scholar
  155. Naraian R, Kumari S, Gautam RL (2018) Biodecolorization of brilliant green carpet industry dye using three distinct Pleurotus spp. Environ Sustain 1:141–148CrossRefGoogle Scholar
  156. Naskar A, Majumder R (2017) Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. J Mol Liq 242:892–899CrossRefGoogle Scholar
  157. Nigam P, Banat IM, Singh D et al (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442CrossRefGoogle Scholar
  158. Ning C, Qingyun L, Aixing T et al (2018) Decolorization of a variety of dyes by Aspergillus flavus A5p1. Bioprocess Biosyst Eng 41:511–518CrossRefGoogle Scholar
  159. Nitisakulkan T, Oku S, Kudo D et al (2014) Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57. J Biosci Bioeng 117:292–297CrossRefGoogle Scholar
  160. Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manag 215:216–229CrossRefGoogle Scholar
  161. Nwinyi OC, Ajayi OO, Amund OO (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol 47:551–562CrossRefPubMedPubMedCentralGoogle Scholar
  162. Oranusi NA, Ogugbue CJ (2005) Effect of cosubstrates on primary biodegradation of triphenylmethane dyes by Pseudomonas sp. Afr J Appl Zool Environ Biol 7:38–44Google Scholar
  163. Pandey BV, Upadhyay RS (2006) Spectroscopic characterization and identification of Pseudomonas fluorescens mediated metabolic products of Acid Yellow-9. Microbiol Res 161:311–315CrossRefGoogle Scholar
  164. Pandey RK, Tewari S, Tewari L (2018) Lignolytic mushroom Lenzites elegans WDP2: laccase production, characterization, and bioremediation of synthetic dyes. Ecotox Environ Safety 158:50–58CrossRefGoogle Scholar
  165. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319CrossRefGoogle Scholar
  166. Park HS, Jun SC, Han KH et al (2017) Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv Appl Microbiol 100:161–202CrossRefGoogle Scholar
  167. Parshetti GK, Kalme SD, Gomare SS (2007) Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. J Biotechnol 98:3638–3642Google Scholar
  168. Paszczynski A, Pasti-Grigsby MB, Goszczynski S et al (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscust. Appl Environ Microbiol 58:3598–3604CrossRefPubMedPubMedCentralGoogle Scholar
  169. Patel R, Suresh S (2008) Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour Technol 99:51–58CrossRefGoogle Scholar
  170. Patel Y, Mehta C, Gupte A (2012) Assessment of biological decolorization and degradation of sulfonated di-azo dye Acid Maroon V by isolated bacterial consortium EDPA. Int Biodeterior Biodegrad 75:187–193CrossRefGoogle Scholar
  171. Pathak VV, Kothari R, Chopra A et al (2015) Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manag 163:270–277CrossRefGoogle Scholar
  172. Pazarlioğlu NK, Telefoncu A (2005) Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochem 40:1807–1814CrossRefGoogle Scholar
  173. Peng X, Ma X, Xu Z (2015) Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Bioresour Technol 180:288–295CrossRefGoogle Scholar
  174. Perei K, Rakhely G, Kiss I et al (2001) Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol 55:101–107CrossRefGoogle Scholar
  175. Phugare SS, Waghmare SR, Jadhav JP (2011) Purification and characterization of dye degrading of veratryl alcohol oxidase from Pseudomonas aeruginosa strain BCH. World J Microbiol Biotechnol 27:2415–2423CrossRefGoogle Scholar
  176. Puvaneshwari N, Muthukrishnan J, Gunasekaran P et al (2002) Biodegradation of benzidine based azodyes direct red and direct blue by the immobilized cells of Pseudomonas fluorescens D41. Indian J Exp Biol 40:1131–1136Google Scholar
  177. Qian HF, Chen W, Sheng GD et al (2008) Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat Toxicol 88:301–307CrossRefGoogle Scholar
  178. Rafii F, Franklin W, Cerniglia CE (1990) Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl Environ Microbiol 56:2146–2151CrossRefPubMedPubMedCentralGoogle Scholar
  179. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustain For 2:1602–1623CrossRefGoogle Scholar
  180. Ramya M, Anusha B, Kalavathy S et al (2007) Biodecolorization and biodegradation of Reactive Blue by Aspergillus spp. Afr J Biotechnol 6:1441–1445Google Scholar
  181. Rani B, Kumar V, Singh J, Bisht S, Teotia P, Sharma S, Kela R (2014) Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz J Microbiol 45(3):1055–1063CrossRefPubMedPubMedCentralGoogle Scholar
  182. Roy U, Sengupta S, Banerjee P et al (2018) Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: response surface methodology optimization and toxicity evaluation. J Environ Manag 223:185–195CrossRefGoogle Scholar
  183. Ryu BH, Weon YD (1992) Decolorization of Azo Dyes by Aspergillus sojae B-10. J Microbiol Biotechnol 2:215–219Google Scholar
  184. Sá CS, Boaventura RA (2001) Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor. Biochem Eng J 9:211–219CrossRefGoogle Scholar
  185. Safi C, Zebib B, Merah O et al (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278CrossRefGoogle Scholar
  186. Samson RA, Visagie CM, Houbraken J et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Studies Myco 78:141–173CrossRefGoogle Scholar
  187. Saparrat MCN, Balatti PA, Arambarri AM et al (2014) Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases. J Ind Microbiol Biotechnol 41:607–617CrossRefGoogle Scholar
  188. Sarnaik S, Kanekar P (1995) Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J Appl Bacteriol 79:459–469CrossRefGoogle Scholar
  189. Sarnaik S, Kanekar P (1999) Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl Microbiol Biotechnol 52:251–254CrossRefGoogle Scholar
  190. Sathishkumar K, Sathiyaraj S, Parthipan P et al (2017) Electrochemical decolorization of methyl red by RuO2 -IrO2 -TiO2 electrode and biodegradation with Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3: an integrated approach. Chemosphere 183:204–211CrossRefGoogle Scholar
  191. Selvakumar KV, Basha CA, Prabhu HJ et al (2010) The potential of free cells of Pseudomonas aeruginosa on textile dye degradation. Bioresour Technol 101:2678–2684CrossRefGoogle Scholar
  192. Seo YH, Park D, Oh YK et al (2015) Harvesting of microalgae cell using oxidized dye wastewater. Bioresour Technol 192:802–806CrossRefGoogle Scholar
  193. Sharma P, Singh L, Dilbaghi N (2009) Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J Hazard Mater 161:1081–1086CrossRefGoogle Scholar
  194. Silveira E, Marques PP, Silva SS et al (2009) Selection of Pseudomonas for industrial textile dyes decolourization. Int Biodeterior Biodegrad 63:230–235CrossRefGoogle Scholar
  195. Singh U, Arora NK, Sachan P (2018) Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Braz J Microbiol 49:38–44CrossRefGoogle Scholar
  196. Sinha S, Singh R, Chaurasia AK et al (2016) Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. J Hazard Mater 306:386–394CrossRefGoogle Scholar
  197. Srinivasan R, Kathiravan MN, Gopinath KP (2011) Degradation of Tectilon Yellow 2G by hybrid technique: combination of sonolysis and biodegradation using mutant Pseudomonas putida. Bioresour Technol 102:2242–2247CrossRefGoogle Scholar
  198. Stormo KE, Crawford RL (1992) Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol 58:727–730CrossRefPubMedPubMedCentralGoogle Scholar
  199. Sugiura W, Miyashita T, Yokoyama T et al (1999) Isolation of azo-dye degrading microorganisms and their application to white discharge printing of fabric. J Biosci Bioeng 88:577–581CrossRefGoogle Scholar
  200. Sultan M (2017) Polyurethane for removal of organic dyes from textile wastewater. Environ Chem Lett 15:347.  https://doi.org/10.1007/s10311-016-0597-8CrossRefGoogle Scholar
  201. Sumathi S, Manju B (2000) Uptake of reactive textile dyes by Aspergillus foetidus. Enzym Microb Technol 27:347–355CrossRefGoogle Scholar
  202. Surkatti R, El-Naas MH (2014) Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Water. Process Eng 1:84–90Google Scholar
  203. Suzuki Y, Yoda T, Ruhul A et al (2001) Molecular cloning and characterization of the gene encoding azoreductase from Bacillus sp. OY 1-2isolated from soil. J Biol Chem 246:9059–9065CrossRefGoogle Scholar
  204. Tamayo-Ramos JA, van Berkel WJ, de Graaff LH (2012) Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Factories 11:165.  https://doi.org/10.1186/1475-2859-11-165CrossRefGoogle Scholar
  205. Tao R, Kinnunen V, Praveenkumar R et al (2017) Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. J Appl Phycol 29:2845–2856CrossRefGoogle Scholar
  206. Telke AA, Kalyani DC, Jadhav UU et al (2009) Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J Mol Cata B: Enzymatic 61:252–260CrossRefGoogle Scholar
  207. Telke AA, Kim SW, Govindwar SP (2012) Significant reduction in toxicity, BOD, and COD of textile dyes and textile industry effluent by a novel bacterium Pseudomonas sp. LBC1. Folia Microbiol 57:115–122CrossRefGoogle Scholar
  208. Thao TP, Kao HC, Juang RS et al (2013) Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. J Taiwan Inst Chem Eng 44:780–785CrossRefGoogle Scholar
  209. Tsai WT, Chen HR (2010) Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J Hazard Mater 175:844–849CrossRefGoogle Scholar
  210. Tuttolomondo MV, Alvarez GS, Desimone MF et al (2014) Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp. J Environ Chem Eng 2:131–136CrossRefGoogle Scholar
  211. Wang B, Hu Y (2007) Comparison of four supports for adsorption of reactive dyes by immobilized Aspergillus fumigatus beads. J Environ Sci 19:451–457CrossRefGoogle Scholar
  212. Wang BE, Hu YY, Xie L et al (2008) Biosorption behavior of azo dye by inactive CMC immobilized Aspergillus fumigatus beads. Bioresour Technol 99:794–800CrossRefGoogle Scholar
  213. Wang W, Zhang Z, Ni H et al (2012) Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase. Microb Cell Factories 11:75.  https://doi.org/10.1186/1475-2859-11-75CrossRefGoogle Scholar
  214. Wang L, Chen X, Wang H et al (2017) Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization. J Environ Manag 187:146–153CrossRefGoogle Scholar
  215. Wu J, Jung BG, Kim KS et al (2009) Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. J Environ Sci 21:960–964CrossRefGoogle Scholar
  216. Xiong XJ, Meng XJ, Zheng TL (2010) Biosorption of C.I Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. J Hazard Mater 175:241–246CrossRefGoogle Scholar
  217. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  218. Xu C, Wang R, Zhang YF et al (2015) Stress response of Chlorella pyrenoidosa to nitro-aromatic compounds. Environ Sci Pollut Res 22:3784–3793CrossRefGoogle Scholar
  219. Yang Y, Hu H, Wang G et al (2011a) Removal of malachite green from aqueous solution by immobilized Pseudomonas sp. DY1 with Aspergillus oryzae. Int Biodeterior Biodegrad 65:429–434CrossRefGoogle Scholar
  220. Yang Y, Jin D, Wang G et al (2011b) Competitive biosorption of Acid Blue 25 and Acid Red 337 onto unmodified and CDAB-modified biomass of Aspergillus oryzae. Bioresour Technol 102:7429–7436CrossRefGoogle Scholar
  221. Yatome C, Ogawa T, Koga D et al (1981) Biodegradability of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13 NA. J Soc Dye Colour 97:166–169CrossRefGoogle Scholar
  222. Yatome C, Ogaw T, Hishida H et al (1990) Degradation of azo dyes by cell-free extract from Pseudomonas stutzeri. J Soc Dye Colour 106:280–283CrossRefGoogle Scholar
  223. Yatome C, Matsufuru H, Taguchi T et al (1993) Degradation of 4-dimethylaminoazobenzene-2-carboxylic acid by Pseudomonas stutzeri. Appl Microbiol Biotechnol 39:778–781CrossRefGoogle Scholar
  224. Yu J, Wang X, Yue PL (2001) Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res 35:3579–3586CrossRefGoogle Scholar
  225. Zabłocka-Godlewska E, Przystaś W, Grabińska-Sota E (2014) Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water Air Soil Pollut 225:1846.  https://doi.org/10.1007/s11270-013-1846-0CrossRefPubMedPubMedCentralGoogle Scholar
  226. Zhao W, Sun H, Ren Y et al (2018) Chlorella zofingiensis as a promising strain in wastewater treatment. Bioresour Technol 268:286–291CrossRefGoogle Scholar
  227. Zheng S, He M, Sui Y et al (2017) Kelp waste extracts combined with acetate enhances the biofuel characteristics of Chlorella sorokiniana. Bioresour Technol 225:142–150CrossRefGoogle Scholar
  228. Zhipei L, Huifang Y (1991) Decolorization and biodegradation metabolism of azo dyes Pseudomonas S-42. J Environ Sci 3:89–102Google Scholar
  229. Zimmermann T, Kulla GH, Leisinger T (1982) Properties of purified orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur J Biochem 29:197–203CrossRefGoogle Scholar
  230. Zope V, Kulkarni M, Chavan M (2007) Biodegradation of synthetic textile dyes Reactive Red 195 and Reactive Green 11 by Aspergillus niger grp: an alternative approach. J Sci Ind Res 66:411–414Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Saroj Kumar Pradhan
    • 1
    • 2
  • Rohita Singla
    • 1
  1. 1.PG Department of BotanyDev Samaj College for WomenFerozepurIndia
  2. 2.Department of BotanyPunjabi UniversityPatialaIndia

Personalised recommendations