A Comparison Between FEM and FVM via the Method of Weighted Residuals

  • Darrell W. PepperEmail author
  • S. Pirbastami
  • David B. Carrington


The Method of Weighted Residuals (MWR) is used to compare the finite element method (FEM) with the finite volume method (FVM) through nodal recursion relations. Both methods reside under the general MWR structure, with the underlying switch between the two methods established through the weighting function. Both methods yield comparable spatial accuracy for steady-state conditions. However, the flexibility of the FEM permits additional options that can increase accuracy, but generally at the expense of additional time and resource constraints.


Finite element method Finite volume method Recursion relation 


  1. 1.
    Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method. Basic Formulation and Linear Problems, 4th Ed., McGraw-Hill, London, UK.Google Scholar
  2. 2.
    Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere, NY.Google Scholar
  3. 3.
    Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B., & Wolfshtein, M. (1969). Heat and mass transfer in recirculating flows. London: Academic Press.zbMATHGoogle Scholar
  4. 4.
    Ansys Fluent (2019). Ansys Inc., Canonsburg, PA.Google Scholar
  5. 5.
    Argyris, J. H. (1954). Recent advances in matrix methods of structural analysis. Pergamon Press, Elmsford, NY.Google Scholar
  6. 6.
    Turner, M., Clough, R. W., Martin, H., & Topp, L. (1956). Stiffness and deflection of complex structures. Journal of Aerosol Science, 23, 805–823.Google Scholar
  7. 7.
    Clough, R. W. (1960). The finite element method in plane stress analysis. In Proceedings of the 2nd Conference on Electronic Computation, ASCE, Pittsburgh, PA (pp. 345–378).Google Scholar
  8. 8.
    Patran 2019 Installation and Operations Guide, 2019, MSC Software Corporation, Newport Beach, CA, 132 p.Google Scholar
  9. 9.
    Ansys 19.2, 2019, Ansys Inc., Canonsburg, PA.Google Scholar
  10. 10.
    COMSOL 5.4, 2019, User’s Manual, COMSOL, Inc., Burlington, MA.Google Scholar
  11. 11.
    Pepper, D. W., Kassab, A. J., & Divo, E. A. (2014). Introduction to finite element, boundary element, and meshless methods, ASME Press, NY.Google Scholar
  12. 12.
    Roache, P. J. (1998). Fundamentals of computational fluid dynamics. Albuquerque, New Mexico: Hermosa Press.Google Scholar
  13. 13.
    Fletcher, C. A. J. (1991). Computational techniques for fluid dynamics, Vol. I and II, Springer, New York.Google Scholar
  14. 14.
    Finlayson, B. A. (1972). The method of weighted residuals and variational principles. New York: Academic Press.zbMATHGoogle Scholar
  15. 15.
    Pepper, D., & Heinrich, J. (2017). The finite element method: basic concepts and applications with MATLAB, Maple, and COMSOL (3rd ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  16. 16.
    Gottlieb, D., & Orzag, S. A. (1977). Numerical analysis of spectral methods: theory and applications. Bristol, England: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  17. 17.
    Maday, Y., & Quateroni, A. (1982). Spectral and pseudo-spectral approximations of the Navier–Stokes equations. SIAM Journal of Numerical Analysis, 19(4), 761–780.CrossRefGoogle Scholar
  18. 18.
    Gray, W. G., & Pinder, G. F. (1976). On the relationship between the finite element and finite difference methods. International Journal for Numerical Methods in Engineering, 10, 893–923.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pepper, D. W., & Baker, A. J. (1979). A simple one-dimensional finite element algorithm with multidimensional capabilities. Numerical Heat Transfer, 2, 81–95.CrossRefGoogle Scholar
  20. 20.
    Pirbastami, S., & Pepper, D. W. (2018). Two-dimensional chapeau function recursion relations, WCCM XIII, July 22–27, NY.Google Scholar
  21. 21.
    Harlow, F. H., & Amsden, A. A. (1971). Fluid Dynamics, A LASL Monograph, LA-4700, June 1971.Google Scholar
  22. 22.
    Schneider, G. E., & Zedan, M. (1981). A modified strongly implicit procedure for the numerical solution of field problems. Numerical Heat Transfer, 4, 1–19.CrossRefGoogle Scholar
  23. 23.
    Idelsohn, S. R., & Onate, E. (1994). Finite volumes and finite elements: two ‘Good Friends’. International Journal for Numerical Methods in Engineering, 37, 3323–3341.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.University of Nevada Las VegasLas VegasUSA
  2. 2.T-3, Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations