Advertisement

Hypotheses-Driven Combustion Technology and Design Development Approach Pursued Since Early 1970s

  • Hukam C. MongiaEmail author
  • Kumud Ajmani
  • Chih-Jen Sung
Chapter
  • 155 Downloads

Abstract

The empirical/analytical combustion design methodology practiced since middle 1970s comprises continuously evolving conventional design practice with significantly increased roles played by hypotheses formulation, its direct or indirect verification, semi-analytical models and multidimensional computational tools. Rapid advances in “applicable CFD” and turbulent combustion modeling during the early 1970s with remarkable contributions made by the team led by Prof. Spalding combined with resources (dollars, people, and facilities) provided by industry (Garrett, Allison, GE Aviation, Goodrich, Parker, and Woodward), government (NASA, the US Air Force, Army and Navy) and numerous universities led to formulation and successful applications of empirical/analytical design methodology in several gas turbine combustion technology and design programs. These programs included NASA staged combustion Concept 3 (in 1977), two Army combustor concepts for small engines (1978), 2100, 2400, and 2900 °F temperature rise combustors (1981–1983), the two first product combustors (1986), two near-stoichiometric temperature high-performance combustors (1993), entitlements for ultralow NOx premix/pre-vaporized and partially premixed mixers (1993, 2008), an RQL combustor for the largest turbofan engine (1996), the second-generation lean-dome combustion technology TAPS demonstration (2003) and its product introduction in GEnx (2009), NASA LDI-2 and LDI-3 technology demonstrations in 2014 and 2018, respectively. An overview of these activities along with the most recent CFD simulation and diagnostics activities are described in this chapter as a recognition of 50 Years of CFD in Engineering Sciences that has provided useful insight for advancing combustion technologies and products while simultaneously improving design process efficiency.

Keywords

Gas turbine combustors Combustion technology CFD Design development process Low-emissions combustors 

References

  1. 1.
    Reynolds, R. S., Kuhn, T. W., & Mongia, H. C. (1977). Advanced combustor analytical design procedure and its application in the design and development testing of a premix/prevaporized combustion system. In 1977 Spring Meeting of the Central States Section of the Combustion Institute.Google Scholar
  2. 2.
    Mongia, H. C., & Smith, K. F. (1978). An empirical/analytical design methodology for gas turbine combustor. In AIAA1978-998.Google Scholar
  3. 3.
    Bruce, T. W., Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume I—Element tests and model validation. In USARTL-TR-55A (AD-A0-67657), March 1979.Google Scholar
  4. 4.
    Mongia, H., Reynolds, R., Coleman, E., & Bruce, T. (1979). Combustor design criteria validation Volume II—Development testing of two full-scale annular gas turbine combustors. In USARTL-TR-55B (AD-A0-67689), March 1979.Google Scholar
  5. 5.
    Mongia, H. C., & Reynolds, R. S. (1979). Combustor design criteria validation Volume III—User’s Manual. In USARTL-TR-55C (AD-AO-66793).Google Scholar
  6. 6.
    Danis, A. M., Burrus, D. L., & Mongia, H. C. (1996). Anchored CCD for gas turbine combustor design and data correlation. In ASME1996-GT-143.Google Scholar
  7. 7.
    Hura, H. S., Joshi, N. D., & Mongia, H. C. (1998). Dry low emissions premixer CCD modeling and validation. In ASME1998-GT-444.Google Scholar
  8. 8.
    Hura, H. S., & Mongia, H. C. (1998). Prediction of NO emissions from a lean dome gas turbine combustor. In AIAA1998-3375.Google Scholar
  9. 9.
    Bahr, D. W., & Gleason, C. C. (1975). Experimental clean combustor program Phase I—Final report. NASA CR-134737.Google Scholar
  10. 10.
    Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1977). Pollution reduction technology program small jet aircraft engines phase 1 final report. NASA CR-135214.Google Scholar
  11. 11.
    Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1978). Pollution reduction technology program small jet aircraft engines phase 2 final report. NASA CR-159415.Google Scholar
  12. 12.
    Bruce, T. W., Davis, F. G., Kuhn, T. E., & Mongia, H. C. (1981). Pollution reduction technology program small jet aircraft engines phase 3 final report. NASA CR-165386.Google Scholar
  13. 13.
    Mongia, H. C. (2008). Recent progress in comprehensive modeling of gas turbine combustion. In AIAA2008-1445.Google Scholar
  14. 14.
    Mongia, H. C., Coleman, E. B., & Bruce, T. W. (1981). Design and testing of two variable geometry combustors for high altitude propulsion engines. In AIAA1981-1389.Google Scholar
  15. 15.
    Kuhn, T. E., Mongia, H. C., Bruce, T. W., & Buchanan, E. (1982). Small gas turbine augmenter design methodology. In AIAA1982-1179.Google Scholar
  16. 16.
    Sanborn, J. W., Mongia, H. C., & Kidwell, J. R. (1983). Design of a low-emission combustor for an automotive gas turbine. In AIAA1983-0338.Google Scholar
  17. 17.
    Roesler, T. C., Mongia, H. C., & Stocker, H. L. (1992). Analytical design and demonstration of a low-cost expendable turbine engine combustor. In AIAA1992-3754.Google Scholar
  18. 18.
    Mongia, H. C. (1993). Application of CFD in combustor design technology. In AGARD CP-536, pp. 12-1/12-18.Google Scholar
  19. 19.
    Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part I: High ΔT. In AIAA2011-0107.Google Scholar
  20. 20.
    Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part II: High T3. In AIAA2011-0106.Google Scholar
  21. 21.
    Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part III: 30 OPR. In AIAA2011-5525.Google Scholar
  22. 22.
    Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part IV: Swirl cup. In AIAA2011-5526.Google Scholar
  23. 23.
    Joshi, N. D., Mongia, H. C., Leonard, G., Stegmaier, J. W., & Vickers, E. C. (1998). Dry low emissions combustor development. In ASME98-GT-310.Google Scholar
  24. 24.
    Mongia, H. C. (2003). TAPS—A fourth generation propulsion combustor technology for low emissions. In AIAA2003-2657.Google Scholar
  25. 25.
    Mongia, H. C. (2011). Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR. In AIAA2011-5527.Google Scholar
  26. 26.
    Tacina, K. M., Podboy, D. P., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. In AIAA2016-4891.Google Scholar
  27. 27.
    Tacina, K. M., Chang, C. T., He, Z. J., Lee, P., Dam, B., & Mongia, H. C. (2014). A second-generation swirl-venturi lean direct injection combustion concept. In AIAA2014-3434.Google Scholar
  28. 28.
    Serag-Eldin, M. A., & Spalding, D. B. (1979). Computations of three-dimensional gas-turbine combustion chamber flows. Journal of Engineering for Gas Turbines and Power, 101, 326–336.CrossRefGoogle Scholar
  29. 29.
    Mongia, H. C., Reynolds, R. S., & Srinivasan, R. (1986). Multidimensional gas turbine combustion modeling: Applications and limitations. AIAA Journal, 24(6), 890–904.CrossRefGoogle Scholar
  30. 30.
    Mongia, H. C. (1988). A status report on gas turbine combustion modeling. In AGARD CP-422, pp. 26-1/26-14.Google Scholar
  31. 31.
    Mongia, H. C. (2001). A synopsis of gas turbine combustor design methodology evolution of last 25 years. In 15th International Symposium on Air Breathing Engines, ISABE-2001-1086.Google Scholar
  32. 32.
    Mongia, H. C. (2001). Gas turbine combustor liner wall temperature calculation methodology. In AIAA2001-3267.Google Scholar
  33. 33.
    Held, T. J., & Mongia, H. C. (1998). Application of a partially premixed laminar flamelet model to a low emissions gas turbine combustor. In ASME1998-GT-217.Google Scholar
  34. 34.
    Mongia, H. C. (2004). Perspective of gas turbine combustion modeling. In AIAA2004-0156.Google Scholar
  35. 35.
    Mongia, H., Krishnaswami, S., & Sreedhar, P. S. V. S. (2007). Comprehensive gas turbine combustion modeling methodology. In Fluent’s International Aerospace CFD Conference, June 18, 2007, Paris.Google Scholar
  36. 36.
    Sripathi, M., Krishnaswami, S., Danis, A. M., & Hsieh, S. Y. (2014). Laminar flamelet based NOx predictions for gas turbine combustors. In GT2014-27258.Google Scholar
  37. 37.
    Held, T. J., Mueller, M. A., Li, S. C., & Mongia, H. C. (2001). A data-driven model for NOx, CO and UHC emissions for a dry low emissions gas turbine combustor. In AIAA2001-3425.Google Scholar
  38. 38.
    Stevens, E. J., Held, T. J., & Mongia, H. C. (2003). Swirl cup modeling Part VII: Partially-premixed laminar flamelet model validation and simulation of a single-cup combustor with gaseous n-heptane. In AIAA 2003-0488.Google Scholar
  39. 39.
    Giridharan, M. G., Held, T. J., & Mongia, H. C. (2003). A wet emissions CFD model based on laminar flamelet approach. In ISABE2003-1087.Google Scholar
  40. 40.
    Kim, W. W., Menon, S., & Mongia, H. C. (1999). Large eddy simulations of reacting flow in a dump combustor. Composites Science and Technology, 143, 25–62.Google Scholar
  41. 41.
    Grinstein, F. F., Young, G., Gutmark, E. J., Hsiao, G., & Mongia, H. (2002). Flow dynamics in a swirl combustor. Journal of Turbulence, 3(30), 1–19.Google Scholar
  42. 42.
    Wang, S., Yang, V., Hsiao, G., Hsieh, S. Y., & Mongia, H. C. (2007). Large eddy simulations of gas-turbine swirl injector flow dynamics. Journal of Fluid Mechanics, 583, 99–122.CrossRefGoogle Scholar
  43. 43.
    Srinivasan, R., Reynolds, R., Ball, I., Berry, R., Johnson, K., & Mongia, H. C. (1983). Aerothermal modeling program Phase I final report. NASA CR-168243.Google Scholar
  44. 44.
    Nikjooy, M., Mongia, H. C., Sullivan, J. P., & Murthy, S. N. B. (1993). Flow interaction experiment, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189192.Google Scholar
  45. 45.
    Nikjooy, M., Mongia, H. C., McDonell, V. G., & Samuelsen, G. S. (1993). Fuel injector-air swirl characterization, aerothermal modeling Phase II final report, Volumes I and II. NASA CR-189193.Google Scholar
  46. 46.
    Danis, A. M., Pritchard, B. A., & Mongia, H. C. (1996). Empirical and semi-empirical correlation of emissions data from modern turbo propulsion gas turbine engines. In ASME1996-GT-86.Google Scholar
  47. 47.
    Ren, X., Sung, C. J., & Mongia, H. C. (2018). On lean direct injection research. In Energy for propulsion. Green energy and technology (pp. 3–26). Springer, Singapore.Google Scholar
  48. 48.
    Tacina, R., Lee, P., & Wey, C. (2005). A lean-direct-injection combustor using a 9-point swirl-venturi fuel injector. In ISABE2005-1106.Google Scholar
  49. 49.
    Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part I—Nonreacting flows. In AIAA2013-1144.Google Scholar
  50. 50.
    Ajmani, K., Mongia, H. C., & Lee, P. (2013). Evaluation of CFD best practices for combustor design: Part II—Reacting flows. In AIAA2013-1143.Google Scholar
  51. 51.
    Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD led designs of prefilming injectors for gas turbine combustors. In GT2018-75329.Google Scholar
  52. 52.
    Ajmani, K., Mongia, H. C., Lee, P., & Tacina, K. M. (2018). CFD predictions of N + 3 cycle emissions for a three-cup gas-turbine combustor. In AIAA2018-4957.Google Scholar
  53. 53.
    Mi, X., Zhang, C., Hui, X., Lin, Y., Mongia, H. C., Twarog, K., et al. (2019). Ignition failure modes during ignition kernel propagation in swirl spray flames. In Second Asia and Middle East Forum of the Global Power and Propulsion Society, September 16–18, 2019.Google Scholar
  54. 54.
    Ren, X., Xue, X., Sung, C. J., Brady, K. B., Mongia, H. C., & Lee, P. (2016). The impact of venturi geometry on reacting flows in a swirl-venturi lean direct injection airblast injector. In AIAA2016-4650.Google Scholar
  55. 55.
    Ren, X., Xue, X., Sung, C. J., Brady, K. B., & Mongia, H. C. (2018). Fundamental investigations for lowering emissions and improving operability. Propulsion and Power Research, 7(3), 197–204.CrossRefGoogle Scholar
  56. 56.
    Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). The impact of swirling flow strength on lean-dome LDI pilot mixers’ operability and emissions. In Experimental thermal and fluid science (in press).Google Scholar
  57. 57.
    Ren, X., Xue, X., Brady, K. B., Sung, C. J., & Mongia, H. C. (2019). Lean-dome pilot mixers’ operability fundamentals. In Innovations in sustainable energy and cleaner environment. Springer, Singapore (in press).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.CSTI Associates, LLCYardleyUSA
  2. 2.CFD Nexus, LLCClevelandUSA
  3. 3.University of ConnecticutStorrsUSA

Personalised recommendations