Large Eddy Simulation of Flows of Engineering Interest: A Review

  • S. SarkarEmail author


The deeper insights of relationships between large and small scales lead to the development of large eddy simulation (LES), where large scales are explicitly resolved and small scales being universal are modeled. With the advent of high computing power, it is feasible now to successfully simulate the complex turbulent flows of engineering interest using LES. The paper starts with a brief discussion on features of turbulence leading to LES and subgrid-scale models. The evaluation of LES to resolve the physics of transitional and turbulent flows are made based on illustrations, where the few being previous studies of the author and his research group. Although results demonstrate an immense potential of LES to simulate the transitional and turbulent flows as an alternative to DNS with moderate computational cost, there exist several bottlenecks even today. The requirement of very fine meshes near walls is one of such bottlenecks in using LES at high Reynolds number flows. The hybrid LES-RANS, which was invented to eliminate the limitations, is also discussed here in brief. As a concluding remark, it can be stated that the method is particularly suitable and superior to RANS for situations, where unsteadiness and large-scale structures dominate the flow.


Large eddy simulation Hybrid LES-RANS Turbine blade Vortex shedding Transition Laminar separation bubble 



I would like to thank Ms. Sonalika Srivastava and Mr. Souvik Naskar for their help in editing the manuscript.


  1. 1.
    Akhavan, R., Ansari, A., Kang, S., & Mangiavacchi, N. (2000). Subgrid-scale interactions in a numerically simulated planar turbulent jet and implications for modeling. Journal of Fluid Mechanics, 408, 83–120.zbMATHCrossRefGoogle Scholar
  2. 2.
    Alam, M., & Sandham, N. D. (2000). Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. Journal of Fluid Mechanics, 410, 1–28.zbMATHCrossRefGoogle Scholar
  3. 3.
    Anand, K., & Subrata, S. (2016). Features of a laminar separated boundary layer near the leading-edge of a model aerofoil for different angles of attack: An experimental study. ASME Journal of Fluids Engineering, 139, 021201–021214.CrossRefGoogle Scholar
  4. 4.
    Bardina, J., Ferziger, J. H., & Reynolds, W. C. (1980). Improved subgrid scale models for large eddy simulation. American Institute of Aeronautics and Astronautics, 80–1357.Google Scholar
  5. 5.
    Breuer, M., Peller, N., Rapp, C., & Manhart, M. (2009). Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Computers & Fluids, 38, 433–457.zbMATHCrossRefGoogle Scholar
  6. 6.
    Cabot, W., & Moin, P. (1999). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbulence Combustion, 63, 269–291.Google Scholar
  7. 7.
    Chaouat, B. (2017). The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow, Turbulence and Combustion, 99(2), 279–327.CrossRefGoogle Scholar
  8. 8.
    Cherry, N. J., Hiller, R., & Latour, M. E. M. P. (1984). Unsteady measurements in a separated and reattaching flow. Journal of Fluid Mechanics, 144, 13–46.CrossRefGoogle Scholar
  9. 9.
    Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22, 745–762.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Davidson, L., & Billson, M. (2006). Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. International Journal of Heat and Fluid Flow, 27, 1028–1042.CrossRefGoogle Scholar
  11. 11.
    Davidson, L., Cokljat, D., Frohlich, J., Leschziner, M., Mellen, C., & Rodi, W. (Eds.). (2003). LESFOIL: Large eddy simulation of flow around a high lift airfoil. In Notes on numerical fluid mechanics (Vol. 83). Springer.Google Scholar
  12. 12.
    Durbin, P. A. (1996). On the k–ε stagnation point anomaly. International Journal of Heat and Fluid Flow, 17, 89–90.CrossRefGoogle Scholar
  13. 13.
    Foroutan, H., & Yavuzkurt, S. (2014). A partially-averaged Navier-Stokes model for the simulation of turbulent swirling flow with vortex breakdown. International Journal of Heat and Fluid Flow, 50, 402–416.CrossRefGoogle Scholar
  14. 14.
    Fransen, R., Morata, E. C., Duchaine, F., Gourdain, N., Gicquel, L. Y. M., & Vial, L. (2012). Comparison of RANS and LES in high pressure turbines (pp. 12–25). Toulouse: Safran Turbomeca, CERFACS.Google Scholar
  15. 15.
    Frisch, U. (1995). Turbulence, the legacy of A. N. Kolmogorov. Cambridge: Cambridge Univ. Press.Google Scholar
  16. 16.
    Fröhlich, J., Mellen, C. P., Rodi, W., Temmerman, L., & Leschziner, M. A. (2005). Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics, 526, 19–66.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fröhlich, J., & von Terzi, D. (2008). Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences, 44(5), 349–377.Google Scholar
  18. 18.
    Gaster, M. (1968). Growth of disturbances in both space and time. Physics of Fluids, 11(4), 723–727.CrossRefGoogle Scholar
  19. 19.
    Germano, M. (1992). Turbulence: The filtering approach. Journal of Fluid Mechanics, 238, 325–336.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A, 3, 1760–1765.zbMATHCrossRefGoogle Scholar
  21. 21.
    Gritskevich, M. S., Garbaruk, A. V., Schütze, J., & Menter, F. R. (2012). Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 88, 431–449.zbMATHCrossRefGoogle Scholar
  22. 22.
    Hain, R., Kahler, C. J., & Radespiel, R. (2009). Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. Journal of Fluid Mechanics, 630, 129–153.zbMATHCrossRefGoogle Scholar
  23. 23.
    Halstead, D. E., Wisler, D. C., Okiishi, T. H., Walker, G. J., Hodson, H. P., & Shin, H.-W. (1997). Boundary layer development in axial compressors and turbines—Part 1 of 4: Composite picture; Part 2 of 4: Compressors; Part 3 of 4: LP turbines; Part 4 of 4: Computations and analyses. ASME Journal of Turbomachinery, 119, 114–127, 426–444, 225–237, 128–139.Google Scholar
  24. 24.
    Harlow, F. H., & Welch, J. E. (1965). Numerical calculation of three-dependent viscous incompressible flow of fluid with free surfaces. Physics of Fluids, 8, 2182–2188.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    He, C., Liu, Y., & Yavuzkurt, S. (2017). A dynamic delayed detached-eddy simulation model for turbulent flows. Computers & Fluids, 146, 174–189.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Horton, H. (1969). A semi-empirical theory for the growth and bursting of laminar separation bubbles. HM Stationery Office.Google Scholar
  27. 27.
    Jansen, K. (1996). Large-eddy simulation of flow around a NACA 4412 airfoil using unstructured grids. In Annual research briefs (pp. 225–232). Center for Turbulence Research, Stanford University and NASA Ames.Google Scholar
  28. 28.
    Jones, B. M. (1934). Stalling. Journal of Royal Aeronautical Society, 38, 753–770.CrossRefGoogle Scholar
  29. 29.
    Kenjereš, S., & Hanjalić, K. (2005). LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers. International Journal of Heat and Fluid Flow, 27, 800–810.Google Scholar
  30. 30.
    Kolmogorov, A. N. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings of the USSR Academy of Sciences, 30, 301.Google Scholar
  31. 31.
    Krajnovic, S., & Davidson, L. (2005). Flow around a simplified car, Part II: Understanding the flow. Journal of Fluids Engineering, 127(5), 919–928.CrossRefGoogle Scholar
  32. 32.
    Launder, B. E. (1991). An introduction to the modeling of turbulence. In VKI lecture series 1991–02, March 18–21, 1991. Von Karman Institute of Fluid Dynamics.Google Scholar
  33. 33.
    Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flows. Advances in Geophysics, 18, 237.CrossRefGoogle Scholar
  34. 34.
    Lesieur, M., & Métais, O. (1996). New trends in large-eddy simulations of turbulence. Annual Review of Fluid Mechanics, 28, 45–82.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lilly, D. K. (1967). The representation of small scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences (Vol. 195).Google Scholar
  36. 36.
    Lilly, D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4, 633–635.CrossRefGoogle Scholar
  37. 37.
    Liou, M.-S. (1996). A sequel to ausm: Ausm+. Journal of Computational Physics, 129, 364–382.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Liou, M.-S. (2006). A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Computational Physics, 214, 137–170.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Liou, M.-S., & Steffen, C. J. (1993). A new flux splitting scheme. Journal of computational Physics, 107, 23–39.Google Scholar
  40. 40.
    Liu, S., Meneveau, C., Katz, J. (1994). On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. Journal of Fluid Mechanics, 275, 83–119.CrossRefGoogle Scholar
  41. 41.
    Mary, I., & Sagaut, P. (2002). LES of a flow around an airfoil near stall. AIAA Journal, 40, 1139.CrossRefGoogle Scholar
  42. 42.
    Mellen, C., Frohlich, J., & Rodi, W. (2003). Lessons from LESFOIL project on large eddy simulation of flow around an airfoil. AIAA Journal, 41(4), 573–581.CrossRefGoogle Scholar
  43. 43.
    Menter, F., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 4.Google Scholar
  44. 44.
    Michelassi, V. (1997). Shock-boundary layer interaction and transition modelling in turbomachinery flows. IMechE Part A Journal of Power and Energy, 211, 225–234.CrossRefGoogle Scholar
  45. 45.
    Michelassi, V., Wissink, J. G., & Rodi, W. (2003). Direct Numerical simulation, large eddy simulation and unsteady Reynolds averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. IMechE Part A Journal of Power and Energy, 217, 403–411.CrossRefGoogle Scholar
  46. 46.
    Morinishi, Y. (1995). Conservative properties of finite difference schemes for incompressible flow. In Annual research brief (pp. 121–132). Center for Turbulence Research, NASA Ames/Stanford University.Google Scholar
  47. 47.
    Nair, K. M., & Sarkar, S. (2017). Large eddy simulation of self-sustained cavity oscillation for subsonic and supersonic flows. Journal of Fluids Engineering, 139, 011102.CrossRefGoogle Scholar
  48. 48.
    Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for the heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1805.zbMATHCrossRefGoogle Scholar
  49. 49.
    Piomelli, U., & Balaras, E. (2002). Wall-layer models for large-eddy simulation. Annual Review of Fluid Mechanics, 34, 349–374.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Piomelli, U., Ferziger, J., Moin, P., & Kim, J. (1989). New approximate boundary conditions for large eddy simulations of wall-bounded flows. Physics of Fluids A, 1, 1061–1068.CrossRefGoogle Scholar
  51. 51.
    Pope, S. B. (2000). Turbulent flows. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  52. 52.
    Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  53. 53.
    Robert, S. K., & Yaras, M. I. (2005). Boundary layer transition affected by surface roughness and free-stream turbulence. ASME Journal of Fluids Engineering, 127(3), 449–457.CrossRefGoogle Scholar
  54. 54.
    Rodi, W., Ferziger, J. H., Breuer, M., & Pourquié, M. (1997). Status of large eddy simulation: Results of a workshop. Journal of Fluids Engineering, 119, 248–262.zbMATHCrossRefGoogle Scholar
  55. 55.
    Sagaut, P. (2000). Large eddy simulation for incompressible flows: An introduction. Springer.Google Scholar
  56. 56.
    Sagaut, P. (2013). Multiscale and multiresolution approaches in turbulence: LES, DES and hybrid RANS/LES methods: Applications and guidelines (2nd ed.). Imperial College Press.Google Scholar
  57. 57.
    Samson, A., & Sarkar, S. (2016). Effects of free-stream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness airfoil. ASME Journal of Fluids Engineering, 138(2), 021202(19).Google Scholar
  58. 58.
    Sarkar, S. (2007). Effects of passing wakes on a separating boundary layer along a low-pressure turbine blade through large-eddy simulation. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221, 551–563.CrossRefGoogle Scholar
  59. 59.
    Sarkar, S. (2008). Identification of flow structures on a LP Turbine due to periodic passing wakes. ASME Journal of Fluids Engineering, 130, 061103.CrossRefGoogle Scholar
  60. 60.
    Sarkar, S. (2009). Influence of wake structure on unsteady flow in a low pressure turbine blade passage. ASME Journal of Turbomachinery, 131(041016), 1–14.Google Scholar
  61. 61.
    Sarkar, S., Babu, H., & Sadique, J. (2016). Interactions of separation bubble with oncoming wakes by LES. ASME Journal of Heat Transfer, 138(2), 021703–021712.CrossRefGoogle Scholar
  62. 62.
    Sarkar, S., & Sarkar, Sudipto. (2010). Vortex dynamics of a cylinder wake in proximity to a wall. Journal of Fluids and Structures, 26, 19–40.zbMATHCrossRefGoogle Scholar
  63. 63.
    Sarkar, S., & Voke, P. R. (2006). Large-eddy simulation of unsteady surface pressure over a LP turbine due to interactions of passing wakes and inflexional boundary layer. ASME Journal of Turbomachinery, 128, 221–231.CrossRefGoogle Scholar
  64. 64.
    Schulte, V., & Hodson, H. P. (1998). Unsteady wake-induced boundary layer transition in high lift LP turbine. ASME Journal of Turbomachinery, 120, 28–35. Google Scholar
  65. 65.
    Schumann, U. (1995). Stochastic backscatter of turbulence energy and scalar variance by random sub-grid scale fluxes. Proceedings of the Royal Society of London. Series A, 451, 293–318.zbMATHGoogle Scholar
  66. 66.
    Shur, M., Spalart, P., Strelets, M., & Travin, A. (1999). Detached-eddy simulation of an airfoil at high angle of attack. Engineering Turbulence Modeling Experiments, 4, 669–678.CrossRefGoogle Scholar
  67. 67.
    Shur, M., Spalart, P. R., Strelets, M. K., & Travin, A. K. (2008). A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 1638–1649.CrossRefGoogle Scholar
  68. 68.
    Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99.CrossRefGoogle Scholar
  69. 69.
    Spalart, P. R. (2009). Detached-eddy simulation. Annual Review of Fluid Mechanics, 41, 181–202.zbMATHCrossRefGoogle Scholar
  70. 70.
    Spalart, P. R., Deck, S., Shur, M., Squires, K., Strelets, M. K., & Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20, 181–195.zbMATHCrossRefGoogle Scholar
  71. 71.
    Spalart, P. R., & Strelets, M. K. (2000). Mechanisms of transition and heat transfer in a separation bubble. Journal of Fluid Mechanics, 403, 329–349.zbMATHCrossRefGoogle Scholar
  72. 72.
    Sreenivasan, K. R. (1991). Fractals and multifractals in turbulence. Annual Review of Fluid Mechanics, 23, 539–600.MathSciNetCrossRefGoogle Scholar
  73. 73.
    Sreenivasan, K. R., & Antonia, R. A. (1997). The phenomenology of small-scale turbulence. Annual Review of Fluid Mechanics, 29, 435–472.MathSciNetCrossRefGoogle Scholar
  74. 74.
    Stadtmüller, P. (2001). Investigation of wake-induced transition on the LP turbine cascade T106 A-EIZ, DFG-VerbundprojectFo 136/11, version 1.0, University of the Armed Forces Munich, Germany.Google Scholar
  75. 75.
    Stieger, R., Hollis, D., & Hodson, R. (2003). Unsteady surface pressures due to wake induced transition in laminar separation bubble on a LP turbine cascade. ASME Papar No. GT2003-38303.Google Scholar
  76. 76.
    Strelets, M. (2001). Detached eddy simulation of massively separated flows. In 39th AIAA, Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
  77. 77.
    Tabor, G. R., & Baba-Ahmadi, M. H. (2010). Inlet conditions for large eddy simulation: A review. Computers & Fluids, 39(4), 553–567.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Temmerman, L., Hadžiadbic, M., Leschziner, M., & Hanjalić, K. (2005). A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. International Journal of Heat and Fluid Flow, 26, 173–190.CrossRefGoogle Scholar
  79. 79.
    Tucker, P. G. (2011). Computation of unsteady turbomachinery flows: Part 2-LES and hybrids. Progress in Aerospace Sciences, 47(7), 546–569.CrossRefGoogle Scholar
  80. 80.
    Tucker, P., & Davidson, L. (2004). Zonal k-l based large eddy simulation. Computers & Fluids, 33(2), 267–287.zbMATHCrossRefGoogle Scholar
  81. 81.
    Van Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23, 1007.zbMATHCrossRefGoogle Scholar
  82. 82.
    Voke, P. R. (1996). Subgrid-scale modeling at low mesh Reynolds number. Theoretical and Computational Fluid Dynamics, 8(2), 131–143.zbMATHCrossRefGoogle Scholar
  83. 83.
    Watmuff, J. H. (1999). Evolution of a wave packet into vortex loops in a laminar separation bubble. Journal of Fluid Mechanics, 397, 119–169.MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Wissink, J. G. (2002). DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes. In 5th International Symposium on Engineering Turbulence Modelling and Experiments (pp. 731–740). Mallorca, Spain: Elsevier.CrossRefGoogle Scholar
  85. 85.
    Wu, X., & Durbin, P. A. (2001). Evidence of longitudinal vortices evolved from distorted wakes in turbine passage. Journal of Fluid Mechanics, 446, 199–228.zbMATHCrossRefGoogle Scholar
  86. 86.
    Wu, X., Jacobs, R. G., Hunt, J. R. C., & Durbin, P. A. (1999). Simulation of boundary layer transition induced by periodically passing wakes. Journal of Fluid Mechanics, 398, 109–153.zbMATHCrossRefGoogle Scholar
  87. 87.
    Wu, X., & Squires, K. D. (1998). Numerical investigation of the turbulent boundary layer over a bump. Journal of Fluid Mechanics, 362, 229–271.zbMATHCrossRefGoogle Scholar
  88. 88.
    Xiao, X., Edwards, J., & Hassan, H. (2003). Inflow boundary conditions for LES/RANS simulations with applications to shock wave boundary layer interactions, Reno, NV, AIAA paper 2003-0079.Google Scholar
  89. 89.
    Yang, Z. Y., & Voke, P. R. (2001). Large-eddy simulation of boundary layer separation and transition at a change of surface curvature. Journal of Fluid Mechanics, 439, 305–333.zbMATHCrossRefGoogle Scholar
  90. 90.
    Zang, Y., Street, R. L., & Koseff, J. (1993). A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids A, 5, 3186–3196.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations