Advertisement

Two-Step Modeling for Growth of Microorganisms in Stirred Tank Photobioreactor

  • Raj Kumar SainiEmail author
  • Pramod P. Wangikar
  • Manaswita Bose
Conference paper
  • 38 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The objective of the present work is to implement the two-time-step approach to determine the growth rate of the photosynthetic microorganisms such as microalgae and cyanobacteria, in a stirred tank photobioreactor. The light intensity distribution is obtained from the CFD simulations for different concentration of the microorganisms in the photobioreactor. The average light intensity is determined in the reactor for different cell concentrations in the culture. The photosynthetic rate is determined using the average light intensity in the reactor for different initial cell concentrations. The mean growth rate of the cyanobacteria in the log phase, i.e., the nutrient abundant condition is compared with the experimental observation.

Keywords

Microalgae Cyanobacteria Light intensity Multiphase Stirred tank photobioreactor 

Notes

Acknowledgements

This work is supported by DBT through DBT-PAN IIT project (14DBTPAN005). The authors thank the head, computer center, IIT Bombay for providing the license of Ansys Fluent for the computational facility. We would also like to thank John Hendry from Biotechnology Laboratory from the Department of Chemical Engineering, IIT Bombay, who helped us in this work.

References

  1. 1.
    Y. Chisti, Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26(3), 126–131 (2008)CrossRefGoogle Scholar
  2. 2.
    R.M.M. Abed, S. Dobretsov, K. Sudesh, Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106, 1–12 (2009)CrossRefGoogle Scholar
  3. 3.
    C. Posten, Design principles of photobioreactors for cultivation of microalgae. Eng. Life Sci. 9(3), 165–177 (2009)CrossRefGoogle Scholar
  4. 4.
    N.H. Norsker, M.J. Barbosa, M.H. Vermuë, R.H. Wijffels, Microalgal production—a close look at the economics. Biotechnol. Adv. 29(1), 24–27 (2011)CrossRefGoogle Scholar
  5. 5.
    D.J.H. Vree, R. Bosma, M. Janssen, M.J. Barbosa, R.H. Wijffels, Comparison of four outdoor pilot-scale photobioreactors. Biotechnol. Biofuels 8(1), 215 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Monod, The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949)CrossRefGoogle Scholar
  7. 7.
    M.R. Droop, Vitamin b12 and marine ecology. Helgolander wissenschaftliche Meeresuntersuchungen 20(1), 629–636 (1970)CrossRefGoogle Scholar
  8. 8.
    J.C. Goldman, E.J. Carpenter, A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19(5), 756–766 (1974)CrossRefGoogle Scholar
  9. 9.
    P. Eilers, J. Peeters, A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42(3), 199–215 (1988)CrossRefGoogle Scholar
  10. 10.
    P. Eilers, J. Peeters, Dynamic behaviour of a model for photosynthesis and photoinhibition. Ecol. Model. 69(1), 113–133 (1993)CrossRefGoogle Scholar
  11. 11.
    R.J. Geider, H.L. Maclntyre, T.M. Kana, Dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43(4), 679–694 (1998)CrossRefGoogle Scholar
  12. 12.
    J. Huisman, Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80(1), 202–210 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Cherif, M. Loreau, Towards a more biologically realistic use of droop’s equations to model growth under multiple nutrient limitation. Oikos 119(6), 897–907 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Mairet, O. Bernard, T. Lacour, A. Sciandra, Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities. 18th IFAC World Congr. IFAC Proc. Vol., 44(1), 10591–10596 (2011)Google Scholar
  15. 15.
    J. Quinn, L. De Winter, T. Bradley, Mircoalgae bulk growth model with application to industrial scale system. Biosource Technol. 102, 5083–5092 (2011)CrossRefGoogle Scholar
  16. 16.
    V.O. Adesanya, M.P. Davey, S.A. Scott, A.G. Smith, Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technol. 157, 293–304 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Baten, J. Ellenberger, R. Krishna, Hydrodynamics of internal air-lift reactors: experiments versus CFD simulations. Chem. Eng. Process. 42(10), 733–742 (2003)CrossRefGoogle Scholar
  18. 18.
    I. Perner-Nochta, C. Posten, Simulations of light intensity variation in photobioreactors. J. Biotechnol. 131(3), 276–285 (2007)CrossRefGoogle Scholar
  19. 19.
    B. Wu, Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation. Biotechnol. Bioeng. 109(11), 2864–2874 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Park, Y. Li, Integration of biological kinetics and computational fluid dynamics to model the growth of Nannochloropsis salina in an open channel raceway. Biotechnol. Bioeng. 112(5), 923–933 (2015)CrossRefGoogle Scholar
  21. 21.
    Applikon bioreactor applikon biotechnology Homepage, http://www.applikon-bio.com/en/. Last Accessed 25 July 2017
  22. 22.
    J.I. Hendry, C.B. Prasannan, A. Joshi, S. Dasgupta, P.P. Wangikar, Metabolic model of synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresource Technol. 213, 190–197 (2016)Google Scholar
  23. 23.
    A. Packer, Y. Li, T. Andersen, Q. Hu, Y. Kuang, M. Sommerfeld, Growth and neutral lipid synthesis in green microalgae: a mathematical model. Bioresource Technol. 102(1), 111–117 (2011)CrossRefGoogle Scholar
  24. 24.
    R.K. Saini, CFD Based analysis of flow phenomena in disc and doughnut pulsed column and stirred tank photobioreactor, IIT Bombay, Mumbai-India, 2017 (unpublished doctoral thesis)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Raj Kumar Saini
    • 1
    Email author
  • Pramod P. Wangikar
    • 2
  • Manaswita Bose
    • 1
  1. 1.Department of Energy Science and EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  2. 2.Department of Chemical EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations