A Review on Processes of Fabrication and Properties of Nano-hybrid Metal Matrix Composites

  • Mukesh Kumar
  • R. K. Gupta
  • Anand Pandey
  • Rahul Goyal
  • Ashish Goyal
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 174)


This review paper tends to analysis nano-hybrid metal matrix composites with a description of their various fabrication processes as well as their comparative studies and some detailed description of powder metallurgy and stir casting. Owing to the higher specific properties, nano-hybrid metal matrix composites are quite useful in number of industries like aviation, military and automobile, etc., and due to this reason, it is most important topic between researchers. There are a lot of scopes in this field and have a very wide range of possibilities.


Nano-hybrid Metal matrix Composites NHMMC Reinforcement 


  1. 1.
    Torralba, J.M., da Costa, C.E., Velasco, F.: P/M aluminum matrix composites: an overview. J. Mater. Process. Technol. 133, 203–206 (2003)CrossRefGoogle Scholar
  2. 2.
    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana-Acad. Proc. Eng. Sci. 28, 319–334 (2003)Google Scholar
  3. 3.
    Zhang, X., Hu, T., Rufner, J.F., LaGrange, T.B., Campbell, G.H., Lavernia, E.J., et al.: Metal/ceramic interface structures and segregation behavior in aluminum-based composites. Acta Mater. 95, 254–263 (2015)CrossRefGoogle Scholar
  4. 4.
    Guo, B., Zhang, X., Cen, X., Wang, X., Songa, M., Ni, S., Yi, J., Shen, T., Du, Y.: Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Mater. Charact. 136, 272–280CrossRefGoogle Scholar
  5. 5.
    Tuber, H., Degischer, H.P., Lefranc, G., Schmitt, T.: Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos. Sci. Technol. 66, 2206–2217 (2006)CrossRefGoogle Scholar
  6. 6.
    Nam, T.H., Requena, G., Degischer, P.: Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles. Compos. Part A Appl. Sci. Manuf. 39, 856–865 (2008)CrossRefGoogle Scholar
  7. 7.
    Chawla, N., Deng, X., Schnell, D.R.M.: Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites. Mater. Sci. Eng. A 426, 314–322 (2006)CrossRefGoogle Scholar
  8. 8.
    Molina, J.M., Rhême, M., Carron, J., Weber, L.: Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles. Scr. Mater. 58, 393–396 (2008)CrossRefGoogle Scholar
  9. 9.
    Evans, A., Sanmarchi, C., Mortensen, A.: Study on properties and selection of metal matrix and reinforcement material for composites. In: Proceedings of the 6th European Conference on Genetic Programming, pp. 34–46 (2003)Google Scholar
  10. 10.
    Wong, W.L.E., Gupta, M., Lim, C.Y.H.: Enhancing the mechanical properties of pure aluminum using hybrid reinforcement methodology. Mater. Sci. Eng. A 423, 148–152 (2006)CrossRefGoogle Scholar
  11. 11.
    Ge, D., Gu, M.: Mechanical properties of hybrid reinforced aluminum based composites. Mater. Lett. 49, 334–339CrossRefGoogle Scholar
  12. 12.
    Zhang, X., Geng, L., Wang, G.S.: Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting. J. Mater. Process. Technol. 176, 141–151 (2006)CrossRefGoogle Scholar
  13. 13.
    Sureshbabu, J.S., Nair, P.K., Kang, C.G.: Nano and hybrid aluminum based metal matrix composites: an overview. In: 16th International Conference on Composite Materials, Kyoto, Japan, pp. 1–5 (2007)Google Scholar
  14. 14.
    Feng, Y.C., Geng, L., Zeng, P.Q., Zeng, Z.Z., Wang, G.S.: Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater. Des. 29, 2023–2026 (2008)CrossRefGoogle Scholar
  15. 15.
    Fan, G.H., Geng, L., Zeng, Z.Z., Wang, G.S., Zeng, P.Q.: Preparation and characterization of Al18B4O33 + BaPbO3/Al hybrid composite. Mater. Lett. 62, 2670–2672 (2008)CrossRefGoogle Scholar
  16. 16.
    Feng, Y.C., Geng, L., Fan, G.H., Li, A.B., Zeng, Z.Z.: The properties and microstructure of hybrid composites reinforced with WO3 particles and Al18B4O33 whiskers by squeeze casting. Mater. Des. 30, 3632–3635 (2009)CrossRefGoogle Scholar
  17. 17.
    Kumar, D.R., Narayanasamy, R., Loganathan, C.: Effect of glass and SiC in aluminum matrix on workability and strain hardening behavior of powder metallurgy hybrid composites. Mater. Des. 34, 120–136 (2012)CrossRefGoogle Scholar
  18. 18.
    Guan, L., Geng, L., Zhang, H., Huang, L.: Effects of stirring parameters on microstructure and tensile properties of (ABOw + SiCp)/6061Al composites fabricated by semi-solid stirring technique. Trans. Nonferrous Met. Soc. China 21, s274–s279 (2011)CrossRefGoogle Scholar
  19. 19.
    Muley, A.V., Aravindan, S., Singh, I.P.: Mechanical and tribological studies on nano particles reinforced hybrid aluminum based composite. Manuf. Rev. 2, 1–15 (2015)CrossRefGoogle Scholar
  20. 20.
    Casati, R., Vedani, M.: Metal matrix composites reinforced by nano-particles—a review. Metals 4, 65–83 (2014)CrossRefGoogle Scholar
  21. 21.
    Uddin, S.M., Mahmud, T., Wolf, C., Glanz, C., Kolaric, I., Volkmer, C., Höller, H., Wienecke, U., Roth, S., Fecht, H.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Comp. Sci. Technol. 70, 2253–2257 (2010)CrossRefGoogle Scholar
  22. 22.
    Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 42–64 (2010)CrossRefGoogle Scholar
  23. 23.
    Trojanova, Z., Lukac, P., Ferkel, H., Riehemann, W.: Elastic and plastic behavior of an ultrafine-grained Mg reinforced with BN nanoparticles. Mater. Sci. Eng. A 370, 154–157 (2004)Google Scholar
  24. 24.
    Deng, C.F., Wang, D.Z., Zhang, X.X., Ma, Y.X.: Damping characteristics of carbon nanotube reinforced aluminum composite. Mater. Lett. 61, 3229–3231 (2007)CrossRefGoogle Scholar
  25. 25.
    Shehata, F., Fathy, A., Abdelhameed, M., Mustafa, S.F.: Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Mater. Des. 30, 2756–2762 (2009)CrossRefGoogle Scholar
  26. 26.
    Ferkel, H., Mordike, B.L.: Magnesium strengthened by SiC nanoparticles. Mat. Sci. Eng. A 298, 193–199 (2001)CrossRefGoogle Scholar
  27. 27.
    Basavarajappa, S., Paulo Davim, J.: Influence of graphite particles on surface roughness and chip formation studies in turning metal matrix composites. Mater. Res. 16(5), 990–996 (2013)CrossRefGoogle Scholar
  28. 28.
    Suresh, P., Marimuthu, K., Ranganathan, S., Rajmohan, T.: Optimization of machining parameters in turning of Al-SiC-Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans. Nonferrous Met. Soc. China 24, 2805–2814 (2014)CrossRefGoogle Scholar
  29. 29.
    Siddesh Kumar, N.G., Shiva Shankar, G.S., Basavarajappa, S., Suresh, R.: Some studies on mechanical and machining characteristics of Al2219/n-B4C/MoS2 nano-hybrid metal matrix composites. Measurement 107, 1–11 (2017)CrossRefGoogle Scholar
  30. 30.
    Casati, R., Vedani, M.: Mechanical and functional properties of ultrafine grained Al wires reinforced by nano-Al2O3 particles. Metals 4(1), 65–83 (2014)CrossRefGoogle Scholar
  31. 31.
    Alaneme, K.K., Olubambi, P.A.: Microstructural analysis and corrosion behavior of Fe, B, and Fe-B-modified Cu-Zn-Al shape memory alloys. J. Mater. Res. Technol. 2(2), 188–194 (2013)CrossRefGoogle Scholar
  32. 32.
    Das, D.K., Mishra, P.C., Singh, S., Pattanaik, S.: Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites—a review. Int. J. Mech. Mater. Eng. 9(1), 1–15 (2014)CrossRefGoogle Scholar
  33. 33.
    Alaneme, K.K., Bodunrin, M.O.: Acta Tech. Corvininesis Bull. Eng. 6(3) [cited 2014 Aug 25] [Internet]. Available from: (2013)
  34. 34.
    Alaneme, K.K., Aluko, A.O.: Fracture toughness (K1C) and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites. Sci. Iran. 19(4), 992–996 (2012)CrossRefGoogle Scholar
  35. 35.
    Surappa, M.K.: Tribological behavior of Al–Si–SiCp composites/automobile brake pad system under dry sliding conditions. Sadhana 28(1–2), 319–334 (2003)CrossRefGoogle Scholar
  36. 36.
    Kok, M.: Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J. Mater. Process. Technol. 161(3), 381–387 (2005)CrossRefGoogle Scholar
  37. 37.
    Yigezu, B.S., Mahapatra, M.M., Jha, P.K.: Study on properties and selection of metal matrix and reinforcement material for composites. J. Miner. Mater. Charact. Eng. 1(4), 124–130 (2013)Google Scholar
  38. 38.
    Oghenevweta, J.E., Aigbodion, V.S., Nyior, G.B., Asuke, F.: J. King Saud Univ. Eng. Sci. [Internet] [cited 2014 Aug 25]. Available from: (2014)
  39. 39.
    Bhandakkar, A., Prasad, R.C., Sastry, S.M.: Enhancement of surface coating characteristics of epoxy resin by dextran: an electrochemical approach. Int. J. Compos. Mater. 4(2), 108–124 (2014)Google Scholar
  40. 40.
    Bodunrin, M.O., Alaneme, K.K., Chown, L.H.: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4(4), 434–445 (2015)CrossRefGoogle Scholar
  41. 41.
    Ravindran, P., Manisekar, K., Vinoth Kumar, S., Rathika, P.: Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Mater. Des. 51, 448–456 (2013)CrossRefGoogle Scholar
  42. 42.
    Sijo, M.T., Jayadevan, K.R.: Analysis of stir cast aluminium silicon carbide metal matrix composite: a comprehensive review. Procedia Technol. 24, 379–385 (2016)CrossRefGoogle Scholar
  43. 43.
    Ma, W., Lu, J.: Effect of surface texture on transfer layer formation and tribological behaviour of copper–graphite composite. J. Wear 270, 218–229 (2011)CrossRefGoogle Scholar
  44. 44.
    Masroor, M., Sheibani, S., Ataie, A.: Effect of milling energy on preparation of Cu–Cr/CNT hybrid nano-composite by mechanical alloying. Trans. Nonferrous Met. Soc. China 26, 1359–1366 (2016)CrossRefGoogle Scholar
  45. 45.
    Yuvaraj, N., Aravindan, S.: Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J. Mater. Res. Technol. 4(4), 398–410 (2015)CrossRefGoogle Scholar
  46. 46.
    Suresh, S., Moorthi, N.S.V.: Process development in stir casting and investigation on microstructures and wear behavior. Proc. Eng. 64, 1183–1190 (2013)Google Scholar
  47. 47.
    Annigeri Veeresh Kumar, U.K.G.B.: Method of stir casting of aluminum metal matrix composites: a review. Mater. Today Proc. 4, 1140–1146 (2017)Google Scholar
  48. 48.
    Madhukar, P., Selvaraj, N., Rao, C.S.P.: Manufacturing of aluminium nano hybrid composites: a state of review. IOP Conf. Ser. Mater. Sci. Eng. 149, 012114 (2016). Scholar
  49. 49.
    Singh, J., Chauhan, A.: Characterization of hybrid aluminum matrix composite for advance applications—a review. J. Mater. Res. Technol. 5(2), 159–169 (2015)Google Scholar
  50. 50.
    Rajmohan, T., Palanikumar, K., Ranganathan, S.: Manufacturing of aluminium nano hybrid composites: a state of review. Trans. Nonferrous Met. Soc. China 23, 2509–2517 (2013)Google Scholar
  51. 51.
    Arun Kumar M.B., Swamy R.P.: Flyash and e-glass fiber reinforced hybrid metal matrix composites. ARPN J. Eng. Appl. Sci. 6(5) (2011)Google Scholar
  52. 52.
    Poovazhagan, L., Kalaichelvan, K., Rajadurai, A., Senthilvelan, V.: Characterization of hybrid silicon carbide and boron carbide nano particles reinforced aluminum alloy composites. Procedia Eng. 64, 681–689 (2013)CrossRefGoogle Scholar
  53. 53.
    Alaneme, K.K., Ademilua, B.O., Bodunrin, M.O.: Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leafash. Tribol. Ind. 35(1), 25–35 (2013)Google Scholar
  54. 54.
    Fatile, O.B., Akinruli, J.I., Amori, A.A.: Microstructure and mechanical behaviour of stir-cast Al-Mg-Sl alloy matrix hybrid composite reinforced with corn cob ash and silicon. Int. J. Eng. Technol. Innov. 4(4), 251–259 (2014)Google Scholar
  55. 55.
    Wong, W.L.E., Karthik, S., Gupta, M.: Development of hybrid MgAl2O3 composites with improved properties using microwave assisted rapid sintering route. J. Mater. Sci. 40, 3395–3402 (2005)Google Scholar
  56. 56.
    Kumar, M., Gupta, R.K., Pandey, A.: A review on fabrication and characteristics of metal matrix composites fabricated by stir casting. IOP Conf. Ser. Mater. Sci. Eng. 377, 012125 (2018). Scholar
  57. 57.
    Kumar, M., Gupta, R.K., Pandey, A.: Study on properties and selection of metal matrix and reinforcement material for composites. In: AIP Conference Proceedings, vol. 2148, p. 030019 (2019).
  58. 58.
    Khare, M., Gupta, R.K., Bhardwaj, B.: Development of empirical relationship for surface roughness during the machining of metal matrix composite. IOP Conf. Ser. Mater. Sci. Eng. 402, 012010 (2018). Scholar
  59. 59.
    Khare, M., Gupta, R.K., Ghosh, S.S., Bhardwaj, B.: Effect of reinforcements (B4C & Al2O3) and rotational speed on tribological properties of aluminum alloy 7075 hybrid composites through friction stir processing. In: AIP Conference Proceedings, vol. 2148, p. 030008 (2019).
  60. 60.
    Srivastava, K.R., Gupta, R.K., Khare, M.: Int. J. Eng. Adv. Technol. (IJEAT) 8(6). ISSN: 2249-8958 (2019)Google Scholar
  61. 61.
    Khare, M., Gupta, R.K., Goyal, R.: Evaluation of mechanical properties of AA7075/Al2O3/Mg hybrid composites. Int. J. Eng. Adv. Technol. (IJEAT). 8(6). ISSN: 2249-8958 (2019)Google Scholar
  62. 62.
    Singh, H., Haq, M.I.U., Raina, A.: Dry sliding friction and wear behaviour of AA6082-TiB2 in situ composites. Silicon (2019). Scholar
  63. 63.
    Ul Haq, M.I., Anand, A.: Evaluation of mechanical and tribological properties of directionally solidified Al-Si based FG composite. Silicon 10, 1819 (2018). Scholar
  64. 64.
    Haq, M.I.U., Anand, A.: Dry sliding friction and wear behaviour of hybrid AA7075/Si3N4/Gr self lubricating composites. Mater. Res. Express 5, 066544 (2018). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringManipal University JaipurJaipurIndia

Personalised recommendations