Advertisement

Microstructural and Photocatalytic Performance of BaZrxTi1−xO3 Ceramics

  • Umesh Mishra
  • K. S. Srikanth
  • Shrikant Vidya
  • Spandan Shukla
  • Parveen
  • Savant Maurya
Chapter
  • 39 Downloads
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 174)

Abstract

In this study, the effect of zirconium addition of (BaZrxTi1−xO3) on microstructural, dielectric and photocatalytic characteristic level has structure composition x = 0–0.15 in detail. All photocatalytic experiments show that the synthesized catalysts had a high photocatalytic activity with Zr addition toward synthetic dye MO under visible light improving the photocatalytic production rate because the band gap shifts toward visible region with increase in x. The ferroelectricity of the samples was done by PE loops, and all samples exhibited well-saturated hysteresis loops. The dielectric measurements indicate the decrease of phase transition temperature from 393 K to near room temperature which is beneficial for many dielectric applications.

Keywords

Photocatalysis Dielectric Ferroelectric 

References

  1. 1.
    Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)CrossRefGoogle Scholar
  2. 2.
    Bahnemann, D.: Photocatalytic water treatment: solar energy applications. Sol. Energy 77(5), 445–459 (2004)CrossRefGoogle Scholar
  3. 3.
    Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W.: Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147(1), 1–59 (2009)CrossRefGoogle Scholar
  4. 4.
    Chong, M.N., Jin, B., Chow, C.W., Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S., Dutta, B.K.: Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)CrossRefGoogle Scholar
  6. 6.
    Mills, A., Davies, R.H., Worsley, D.: Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 22(6), 417–425 (1993)CrossRefGoogle Scholar
  7. 7.
    Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  8. 8.
    Rajeshwar, K., Osugi, M.E., Chanmanee, W., Chenthamarakshan, C.R., Zanoni, M.V., Kajitvichyanukul, P., Krishnan-Ayer, R.: Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C: Photochem. Rev. 9(4), 171–192 (2008)CrossRefGoogle Scholar
  9. 9.
    Shang, M., Wang, W., New, H.X.: Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth Des. 9(2), 991–996 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Yao, S., Xue, L., Yan, Y.: Sol–gel combustion synthesis of nanocrystalline LaMnO3 powders and photocatalytic properties. J. Mater. Sci. 44(16), 4455–4459 (2009)CrossRefGoogle Scholar
  11. 11.
    Mu, Q., Zhang, Q., Wang, H., Li, Y.: Facile growth of vertically aligned BiOCl nanosheet arrays on conductive glass substrate with high photocatalytic properties. J. Mater. Chem. 22(33), 16851–16857 (2012)CrossRefGoogle Scholar
  12. 12.
    Gonzalez, C.P., Schileo, G., Murakami, S., Khesro, A., Wang, D., et al.: Continuously controllable optical band gap in orthorhombic ferroelectric KNbO3-BiFeO3 ceramics. Appl. Phys. Lett. 110, 172902 (2017)CrossRefGoogle Scholar
  13. 13.
    Drew, K., Girishkumar, G., Vinodgopal, K., Kamat, P.V.: Boostingfuelcellperformance with a semiconductor photocatalyst: TiO2/Pt–Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B 109(24), 11851–11857 (2005)CrossRefGoogle Scholar
  14. 14.
    Kim, H., Kim, J., Kim, W., Choi, W.: Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the Cascadal electron transfer. J. Phys. Chem. C 115(19), 9797–9805 (2011)CrossRefGoogle Scholar
  15. 15.
    Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S., Hamilton, J.W., Byrne, J.A., O’shea, K., Entezari, M.H.: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B: Environ. 125(21), 331–349 (2012)CrossRefGoogle Scholar
  16. 16.
    Gao, F., Chen, X.Y., Yin, K.B., Dong, S., Ren, Z.F., Yuan, F., Yu, T., Zou, Z.G., Liu, J.M.: Magnetic and photocatalytic behaviors of Ca Mn co-doped BiFeO3 nanofibres. Adv. Mater. 19, 2889 (2007)CrossRefGoogle Scholar
  17. 17.
    Ruan, Q.J., Zhang, W.-D.: Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Phys. Chem. C 113, 4168 (2009)Google Scholar
  18. 18.
    Cheng, H., Huang, B., Dai, Y., Qin, X., Zhang, X., Wang, Z., Jiang, M.: Band gap engineering design for construction of energy levels well matched semiconductor junction with enhanced visible light driven photocatalytic activity. J. Solid State Chem. 182, 2274 (2009)Google Scholar
  19. 19.
    Tian, Y., Chang, B., Lu, J., Fu, J., Xi, F., Dong, X.: Green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 5, 7079 (2013)CrossRefGoogle Scholar
  20. 20.
    Li, G., Puddu, V., Tsang, H.K., Gora, A., Toepfer, B.: Visible light-induced photocatalytic and antibacterial activity. Appl. Catal. B Environ. 99, 388 (2010)Google Scholar
  21. 21.
    Srikanth, K.S., Vaish, R., Hooda, M., Kushwaha, H.: Structural and photocatalytic performance of ferroelectric ceramics. Mat. Sci. Semicond. Process. (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Umesh Mishra
    • 1
  • K. S. Srikanth
    • 1
  • Shrikant Vidya
    • 1
  • Spandan Shukla
    • 1
  • Parveen
    • 1
  • Savant Maurya
    • 1
  1. 1.Department of Mechanical EngineeringGalgotias UniversityGreater NoidaIndia

Personalised recommendations