Computer Tools for Energy Systems

  • Atyam Nageswara Rao
  • P. Vijayapriya
  • M. Kowsalya
  • S. Suman Rajest
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)


This manuscript comprises a brief review of distinct tools that are used for analysing the renewable integration. Though numerous tools are used, a few are considered for explanatory purposes using the web sources of various tool developers. The details in this manuscript give the reader the necessary information to select and identify a suitable tool for renewable energy integration and its analysis for diverse objectives. This manuscript reveals that there is no tool exclusively which addresses all the problems that are related to renewable energy integration. Every objective has its own tool fulfilling its criterion. All the tools mentioned in this manuscript are related to typical applications for analysing the energy system from the state level to the national level. The details of the tools mentioned for analysis are looked at various factors like their energy sector, accounted technology, parameters, availability of tools, etc. Lastly, this manuscript provides information related to direct the decision-maker.


Energy tools Renewable energy Renewable energy integration Power energy system 


  1. 1.
    Universität Karlsruhe: Institute for Industrial Production. Accessed 18.06.09
  2. 2.
    Karlsson, K., Meibom, P.: Integration of Hydrogen as Energy Carrier in the Nordic Energy System. Risø National Laboratory (2006)Google Scholar
  3. 3.
    Ravn, H.: Balmorel. Accessed 22.04.09
  4. 4.
    Ball, M., Wietschel, M., Rentz, O.: Integration of a hydrogen economy into the German energy system: an optimising modelling approach. Int. J. Hydrogen Energy 32(10–11), 1355–1368 (2007)CrossRefGoogle Scholar
  5. 5.
    Ea Energy Analyses: 50% Wind Power in Denmark in 2025. Ea Energy Analyses (2007)Google Scholar
  6. 6.
    Heggedal, A.M.: Investment in new transmission capacity between Estonia and Finland—effects on the electricity market and welfare. Masters thesis, Department of Economics and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway (2006)Google Scholar
  7. 7.
    Eesti Energia, Latvenergo, Lietuvos Energija, Elkraft System, COWI, Danish Energy Agency: Power Sector Development in a Common Baltic Electricity Market. Elkraft System, COWI (2005)Google Scholar
  8. 8.
    Elkraft System, COWI, Lietuvos Energija, Lithuanian Energy Institute: Economic Analyses in the Electricity Sector in Lithuania. Elkraft System, COWI, Lietuvos Energija, Lithuanian Energy Institute (2002)Google Scholar
  9. 9.
    Ea Energy Analyses: Large Scale Wind Power in New Brunswick—A Regional Scenario Towards 2025. Ea Energy Analyses (2008)Google Scholar
  10. 10.
    Morthorst, P.E., Jensen, S.G., Meibom, P.: Investering og prisdannelse på et liberaliseret elmarked (Investment and Pricing in a Liberalised Electricity Market). Risø National Laboratory (2005)Google Scholar
  11. 11.
    Jensen, S.G., Meibom, P.: Investments in liberalised power markets: gas turbine investment opportunities in the Nordic power system. Int. J. Electr. Power Energy Syst. 30(2), 113–124 (2008)CrossRefGoogle Scholar
  12. 12.
    Oak Ridge National Laboratory: Whole-Building and Community Integration Program Google Scholar
  13. 13.
    Aalborg University: EnergyInteractive.NET. Accessed 11.06.09
  14. 14.
    ABARE: ABARE ModelsGoogle Scholar
  15. 15.
    Argonne National Laboratory: Electricity Market Complex Adaptive System (EMCAS)Google Scholar
  16. 16.
    EMINENT2: Welcome to EMINENTGoogle Scholar
  17. 17.
    Segurado, R., Pereira, S., Pipio, A., Alves, L.: Comparison between EMINENT and other energy technology assessment tools. J. Cleaner Prod. 17(10), 907–910 (2009)CrossRefGoogle Scholar
  18. 18.
    Jansen, P., Koppejan, J., Hetland, J., Klemeš, J., Phuengphaeng, T., Pipio, A.: EMINENT accelerates market introduction of promising early stage technologies for transport and energy. In: Proceedings of the CISAP1—1st Italian Convention on Safety and Environment in Process Industry, Palermo, Italy, 28–30 Nov 2004Google Scholar
  19. 19.
    SINTEF: EOPS and EMPSGoogle Scholar
  20. 20.
    Warland, G., Haugstad, A., Huse, E.S.: Including thermal unit start-up costs in a long-term hydro-thermal scheduling model. In: Proceedings of the 16th Power Systems Computation Conference, Glasgow, Scotland, 14–18 July 2008Google Scholar
  21. 21.
    Sedaghati, A.: Evaluating the consequences of investment in distributed power production. In: Proceedings of the 2005 IEEE International Symposium on Intelligent Control and 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus, 27–29 June 2005Google Scholar
  22. 22.
    Fosso, O.B., Gjelsvik, A., Haugstad, A., Mo, B., Wangensteen, I.: Generation scheduling in a deregulated system. The Norwegian case. IEEE Trans. Power Syst. 14(1), 75–81 (1999)CrossRefGoogle Scholar
  23. 23.
    Haugstad, A., Rismark, O.: Price forecasting in an open electricity market based on system simulation. In: Proceedings of the EPSOM’98—International Conference on Electrical Power Systems Operation and Management, Zürich, Switzerland, 23–25 Sept 1998Google Scholar
  24. 24.
    Doorman, G., Kjølle, G., Uhlen, K., Ståle, E., Flatabø, N.: Vulnerability of the Nordic Power System: Main Report. SINTEF, Nordic Council of Ministers (2004)Google Scholar
  25. 25.
    Lund, H., Munster, E.: Modelling of energy systems with a high percentage of CHP and wind power. Renew. Energy 28(14), 2179–2193 (2003)CrossRefGoogle Scholar
  26. 26.
    Lund, H., Salgi, G.: The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manage. 50(5), 1172–1179 (2009)CrossRefGoogle Scholar
  27. 27.
    Mathiesen, B.V., Lund, H.: Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources. IET Renew. Power Gener. 3(2), 190–204 (2009)CrossRefGoogle Scholar
  28. 28.
    EMD International A/S: Accessed 23.04.09
  29. 29.
    Sauer, C., Erge, T., Barnsteiner, M.: Demonstration of innovative electricity marketing options from decentralised generation—the Badenova showcase. In: Proceedings of the CISBAT 2009: Renewables in a Changing Climate, Lausanne, Switzerland, 2–3 Sept 2009Google Scholar
  30. 30.
    Lund, H., Siupsinskas, G., Martinaitis, V.: Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania. Appl. Energy 82(3), 214–227 (2005)CrossRefGoogle Scholar
  31. 31.
    Strckiene, G., Andersen, A.N.: Analyzing the Optimal Size of a CHP-Unit and Thermal Store When a German CHP-Plant is Selling at the Spot Market. EMD International A/S, Market Access for Smaller Size Intelligent Electricity Generation (MASSIG) (2008)Google Scholar
  32. 32.
    Argonne National Laboratory: Energy and Power Evaluation Program (ENPEPBALANCE)Google Scholar
  33. 33.
    International Atomic Energy Agency: Comparative Assessment of Energy Options and Strategies in Mexico Until 2025. International Atomic Energy Agency (2005)Google Scholar
  34. 34.
    Conzelmann, G., Koritarov, V.: Turkey Energy and Environmental Review. Argonne National Laboratory (2002)Google Scholar
  35. 35.
    Argonne National Laboratory: Generation and Transmission Maximization (GTMax) ModelGoogle Scholar
  36. 36.
    Argonne National Laboratory: Power Systems Analysis ProgramGoogle Scholar
  37. 37.
    Koritarov, V.S., Veselka, T.D.: Modeling the Regional Electricity Network in Southeast Europe. Argonne National Laboratory (2005)Google Scholar
  38. 38.
    Kostova, B., Poprea, L., Popescu, V., Veselka, T.D.: Simulation of regional power markets in the planning of trans-border interconnections. In: Proceedings of the IEEE PES PowerTech 2009, Bucharest, Romania, 28 June–2 July 2009Google Scholar
  39. 39.
    Argonne National Laboratory: The Economic Cost of the March 2008 Glen Canyon “Flush”Google Scholar
  40. 40.
    Instituto Superior Técnico, University of Zagreb: H2RESGoogle Scholar
  41. 41.
    Fowler, P., Krajacic, G., Loncar, D., Duic, N.: Modeling the energy potential of biomass—H2RES. Int. J. Hydrogen Energy 34(16), 7027–7040 (2009)CrossRefGoogle Scholar
  42. 42.
    Krajacic, G., Duic, N., da Graça Carvalho, M.: H2RES, energy planning tool for island energy systems—the case of the Island of Mljet. Int. J. Hydrogen Energy 34(16), 7015–7026 (2009)CrossRefGoogle Scholar
  43. 43.
    Duic, N., da Graça Carvalho, M.: Increasing renewable energy sources in island energy supply: case study Porto Santo. Renew. Sustain. Energy Rev. 8(4), 383–399 (2004)CrossRefGoogle Scholar
  44. 44.
    HOMER Energy LLC: HOMERGoogle Scholar
  45. 45.
    Bekele, G., Palm, B.: Wind energy potential assessment at four typical locations in Ethiopia. Appl. Energy 86(3), 388–396 (2009)CrossRefGoogle Scholar
  46. 46.
    Rehman, S., El-Amin, I.M., Ahmad, F., Shaahid, S.M., Al-Shehri, A.M., Bakhashwain, J.M., et al.: Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant. Renew. Sustain. Energy Rev. 11(4), 635–653 (2007)CrossRefGoogle Scholar
  47. 47.
    Institute for Energy Technology: HYDROGEMS. Accessed 25.04.09
  48. 48.
    Zoulias, E.I., Glockner, R., Lymberopoulos, N., Tsoutsos, T., Vosseler, I., Gavalda, O., et al.: Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications. Renew. Sustain. Energy Rev. 10(5), 432–462 (2006)CrossRefGoogle Scholar
  49. 49.
    Ulleberg, Ø., Ito, H., Maack, M.H., Ridell, B., Miles, S., Kelly, N., et al.: Hydrogen Implementing Agreement (HIA); Task 18—Integrated Systems Evaluation; Subtask B—Demonstration Project Evaluations; Final Report. International Energy Agency (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Atyam Nageswara Rao
    • 1
  • P. Vijayapriya
    • 2
  • M. Kowsalya
    • 2
  • S. Suman Rajest
    • 3
  1. 1.Department of Electrical and Electronics EngineeringPresidency UniversityBangaloreIndia
  2. 2.School of Electrical EngineeringVellore Institute of TechnologyVelloreIndia
  3. 3.Vels Institute of Science, Technology and Advanced Studies (VISTAS)ChennaiIndia

Personalised recommendations