Advertisement

Review on Radio Frequency Micro Electro Mechanical Systems (RF-MEMS) Switch

  • R. KarthickEmail author
  • S. P. K. Babu
Chapter
  • 32 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

Miniaturization of mechanical or electromechanical systems has paved the way to develop Micro Electro Mechanical Systems (MEMS), and they have the potentials for application in communication systems. Radio Frequency MEMS (RF-MEMS) switches can be used as an alternative to mechanical and semiconductor devices-based switches such as PIN diodes or varactor diodes for their better isolation, reduced insertion loss, low-power consumption and higher-power handling capabilities. There are various constraints involved in designing RF-MEMS switch like finite or limited time to toggle, prone to failure, power handling capacity, RF performance, material selection, etc. Hence, it is necessary to properly select key parameters and optimize the switch to achieve desired outcome for specific applications. This paper discusses design constraints and various parameters involved in designing RF-MEMS switch. From the review, it is found that shunt-type configuration of RF-MEMS switch with electrostatic actuation, capacitive contact type and bridge structure are suitable for millimetre wave applications which are explored for future bandwidth hungry communication systems.

Keywords

RF-MEMS Switches 

References

  1. 1.
    Hsu, T.-R.: MEMS and Microsystems: Design and Manufacture. McGraw Hill Education Private Limited (2002)Google Scholar
  2. 2.
    Rebeiz, G.M.: RF MEMS Theory, Design, and Technology. Wiley, New York (2003)Google Scholar
  3. 3.
    Brown, E.R.: RF MEMS switches for reconfigurable integrated circuits. IEEE Trans. Microw. Theory Tech. 46, 1868–1880 (1998)CrossRefGoogle Scholar
  4. 4.
    Varadan, V.K., Vinoy, K.J., Jose, K.A.: RF MEMS and Their Applications. Wiley, New York (2011)Google Scholar
  5. 5.
    Nguyen, C.T.C.: Microelectromechanical system for wireless communication. In: The 11th Annual International workshop on Micro Electro Mechanical Systems. Heidelberg, Germany, pp. 1–7 (1998)Google Scholar
  6. 6.
    Zhang, S., Ying, Z.N., Xiong, J., He, S.L.: Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wirel. Propag. Lett. 8, 1279–1282 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhu, Y.-Q., Han, L., Tang, J.-Y.: MEMS Switch Manages Millimeter-Wave Signals”, Microwaves & RF, pp. 58–65, Nov 2013Google Scholar
  8. 8.
    Chang, K.: Microwave Solid State Circuits and Application. Wiley, Chichester, Sussex (1994)Google Scholar
  9. 9.
    Mafinejad, Y., et al.: Design and Simulation of a RF Mems Shunt Switch for Ka and V Bands and the Impact of Varying Its Geometrical Parameters. IEEE, pp. 823–826 (2009)Google Scholar
  10. 10.
    Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag. 2, 59–71 (2001)CrossRefGoogle Scholar
  11. 11.
    Mansour, R.R., et al.: RF MEMS devices. In: Proceedings of the International Conference on MEMS, NANO and Smart Systems, pp. 103–107 (2003)Google Scholar
  12. 12.
    Hindle, P.: The state of RF/microwave switch devices. J. Microw. 53(11), 20–36 (2010)Google Scholar
  13. 13.
    Wipf, S.T., et al.: D-band RF MEMS SPDT switch in a 13 µm SiGe BiCMOS technology. IEEE Microw. Wirel. Compon. Lett. 26, 1002–1004 (2016)CrossRefGoogle Scholar
  14. 14.
    Peterson, K.E.: Micromechanical membrane switches on silicon. IBM J. Res. Dev. 23, 376–385 (1979)CrossRefGoogle Scholar
  15. 15.
    Brown, E.R.: RF MEMS for reconfigurable integrated circuits. IEEE Trans. Theory Technol. 46, 1868–1880 (1998)CrossRefGoogle Scholar
  16. 16.
    Vinoy, K.J., et al.: Surface micromachined capacitive RF switches with low actuation voltage and steady contact. J. Microelectromech. Syst. 26, 643–652 (2017)CrossRefGoogle Scholar
  17. 17.
    Persano, A., et al.: Influence of design and fabrication on RF performance of capacitive RF MEMS switches. Microsyst. Tachnol. 22, 1741–1746 (2016)CrossRefGoogle Scholar
  18. 18.
    Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: modeling. IEEE Trans. Microw. Theory Tech. 48, 1045–1052 (2000) CrossRefGoogle Scholar
  19. 19.
    Khodaddy, K., et al.: Design and modelling of a novel RF MEMS series switch with low actuation voltage. Microsyst. Technol. 22(12), 2921–2929 (2015)CrossRefGoogle Scholar
  20. 20.
    Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: design. IEEE Trans. Microw. Theory Tech. 48, 1053–1056 (2000)CrossRefGoogle Scholar
  21. 21.
    Jung, C.W., De Flaviis, F.: RF-MEMS capacitive series of CPW&MSL configurations for reconfigurable antenna application. In: IEEE Antennas and Propagation Society International Symposium, vol. 2A, pp. 425–428, July 2005Google Scholar
  22. 22.
    George, R., et al.: Design of series RF MEMS switches suitable for reconfigurable applications. In: IEEE-Proceedings of ICCPCT (2017)Google Scholar
  23. 23.
    Zhang, L.X., Zhao, Y.P.: Electromechanical model of RF MEMS switches. Microsyst. Technol. 9, 420–426 (2003)CrossRefGoogle Scholar
  24. 24.
    Cho, I.J., et al.: A low voltage and low power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces. IEEE Trans. Microw. Theory Tech. 53(7), 2450–2457 (2005)CrossRefGoogle Scholar
  25. 25.
    He, X.J., et al.: Electrothermally actuated RFMEMS capacitive switch with atomic layer deposited dielectric. In: 16th International IEEE Conference, pp. 2470–2473 (2011)Google Scholar
  26. 26.
    Bachman, M., et al.: High power magnetically actuated microswitches fabricated in laminates. IEEE Electron. Dev. Lett. 33, 1309–1311 (2012)CrossRefGoogle Scholar
  27. 27.
    Guerre, R., et al.: Wafer level transfer technologies for PZT based RF MEMS switches. J. Microelectromech. Syst. 19, 548–560 (2010)CrossRefGoogle Scholar
  28. 28.
    Molaei, S., Ganji, B.A.: Design and simulation of a noval RF MEMS shumt capacitive switch with low actuation voltage and high isolation. J. Microsyst. Tech. 23(6), 1907–1912 (2016)CrossRefGoogle Scholar
  29. 29.
    Li, M., et al.: Design and fabrication of a low insertion loss capacitive RF MEMS switch with noval micro structures for actuation. Solid State Electron. 127, 32–37 (2016)CrossRefGoogle Scholar
  30. 30.
    Lee, H.C., et al.: Design, fabrication and RF performance of two different types of piezoelectrically actuated Ohmic MEMS switches. J. Micromech. Microeng. 15, 2098–2104 (2009)CrossRefGoogle Scholar
  31. 31.
    Van Spenger, W.M., et al.: On the physics of stiction and its impact on the reliability of microstructures. J. Adhes. Sci. Technol. 17, 563–582 (2003)CrossRefGoogle Scholar
  32. 32.
    Czaplewski, D.A., et al.: Lifeime limitations of Ohmic, contacting RF MEMS switches with Au, Pt and Ir contact materials due to accumulation of ‘friction polymer’ on the contacts. J. Micromech. Microeng. 15, 2098–2104 (2009)Google Scholar
  33. 33.
    Goldsmith, L., et al.: Performance of low loss RF MEMS capacitive switches. IEEE Microw. Guided Wave Lett. 8, 269–271 (1998)CrossRefGoogle Scholar
  34. 34.
    Mafinejad, Y., et al.: Low insertion loss and high isolation capacitive RF MEMS switch with low pull-in voltage. Int. J. Adv. Manuf. Technol. 93(1), 661–670 (2017)CrossRefGoogle Scholar
  35. 35.
    Sawant, B., et al.: Modeling and analysis of low voltage, high isolation capacitive type RF MEMS switches. In: IEEE, ICCCNT 2018, IISC India, July 2018Google Scholar
  36. 36.
    Rahman, H.U., et al.: Cantilever beam design for RF MEMS switches. Micromech. Microeng 20, 1–12 (2010)CrossRefGoogle Scholar
  37. 37.
    Vakilian, M., et al.: Optimization of cantilever based MEMS switch used in reconfigurable antennas. In: IEEEICSE 2012 Proceedings, 2012, Kuala Lumpur, MalaysiaGoogle Scholar
  38. 38.
    Hu, G.-W., Liu, Z.-W., Hou, Z.-H., Liu, L.-T., Li, Z.-J.: A dielectric bridge type series contact switch 0–10 GHz applications. In: 2006 8th International Conference on Solid State and Integrated Circuit Technology Proceedings, pp. 542–544, 23–26 Oct 2006Google Scholar
  39. 39.
    Saha, S.C., et al.: Modeling of spring constant and pull down voltage of non-uniform RF MEMS cantilever incorporating stress gradiant. J. Sens. Trans. 11, 54–68 (2008)Google Scholar
  40. 40.
    Liu, Y., et al.: A compact single-cantilever multicontact RF MEMS switch with enhanced reliability. IEEE Microw. Wirel. Compon. Lett. 28, 191–193 (2018)CrossRefGoogle Scholar
  41. 41.
    Sravani, K.G., et al.: Role of dielectric layer and beam membrane in improving the performance of capacitive RF MEMS switches for Ka band applications. Microsyst. Technol. (2018)Google Scholar
  42. 42.
    Zhang, N., et al.: Design and performance of a J band MEMS switch. MDPI Micromach. 10(7), 467 (2019)CrossRefGoogle Scholar
  43. 43.
    Roark, R.J., Young, W.C.: Formulas for Stress and Strain, 6th edn. McGraw-Hill, New York (1989)Google Scholar
  44. 44.
    Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, 4th edn. PWS Publishing Company, Boston (1997)Google Scholar
  45. 45.
    Fedder, G.: MEMS fabrication. In: Proceedings of the IEEE International Test Conference, 30 Sept–2 Oct 2003Google Scholar
  46. 46.
    Gupta, A.K., Sharma, N.: Investigation of actuation voltage for non-uniform serpentine flexure design of RF MEMS switch. Springer Microsyst. Technol. 20, 413–418 (2014)CrossRefGoogle Scholar
  47. 47.
    Yun, W.: A surface micromachined accelerometer with integrated CMOS detection circuitry. Ph.D. thesis. University of California, Berkeley, CA (1992)Google Scholar
  48. 48.
    Fedder, G. K.: Simulation of microelectromechanical systems. Ph.D. thesis. University of California, Berkeley, CA (1994)Google Scholar
  49. 49.
    Pacheco, S.P., et al.: Design of low actuation voltage MEMS switch microwave symposium digest. IEEE MTT-S International, vol. 1, pp. 165–168 (2000)Google Scholar
  50. 50.
    Badia, M.F.B.: RF MEMS shunt capacitive switches using AIN compared to Si3N4 dielectric. J. Microelectromech. Syst. 21(5), 1229–1240 (2012)CrossRefGoogle Scholar
  51. 51.
    Wei, H., et al.: High on/off capacitance ratio RF MEMS capacitive switches. Micromach. Microeng. 27(5), 055002 (2017)CrossRefGoogle Scholar
  52. 52.
    Park, J.Y., et al.: Monolithically integrated micromachined RF MEMS capacitive switches. Sensors 89, 88–94 (2001)Google Scholar
  53. 53.
    Persano, A., et al.: Ta2O5 thin films for capacitive RF MEMS switches. J. Sens. 2010, 5 (2010)CrossRefGoogle Scholar
  54. 54.
    Wang, G., et al.: Novel reliable RF capacitive MEMS switches with photodefinable metal-oxide dielectrics. J. Microelectromech. Syst. 16, 550–555 (2007)CrossRefGoogle Scholar
  55. 55.
    Kogut, L.: The influence of surface topography on the electromechanical characteristics of parallel-plate MEMS capacitors. J. Micromech. Microeng. 15, 1068–1075 (2005)CrossRefGoogle Scholar
  56. 56.
    Yu, A.B., Liu, A.Q., Zhang, Q.X., Hosseini, H.M.: Effect of surface roughness on electromagnetic characteristics of capacitive switches. J. Micromech. Microeng. 16(10), 2157 (2006)CrossRefGoogle Scholar
  57. 57.
    Goldsmith, C.L., Forchand, D.I.: Temperature variation of actuation voltage in capacitive MEMS switches. IEEE Microw. Wireless Compon. Lett. 15, 718–720 (2005)CrossRefGoogle Scholar
  58. 58.
    Hosseinzadeh, S., Zehtabchi, A.R., Habibnejad. M.: Determination the effects of structural parameters on pull down voltage of RFMEMS switches. In: Microwave Conference. IEEE (2007) Google Scholar
  59. 59.
    Agarwal, S., Kashyap, R., Guha, K., Baishya, S.: Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices Microstruct. (2016).  https://doi.org/10.1016/j.spmi.2016.10.022CrossRefGoogle Scholar
  60. 60.
    Philippine, M.A., et al.: Experimental validation of topology optimization for RF MEMS capacitive switch design. J. Microelectromech. Syst. 22, 1296–1309 (2013)CrossRefGoogle Scholar
  61. 61.
    Muldavin, J.B., Rebeiz, G.B.: High isolation CPW MEMS shunt switches—part I: modeling. IEEE Trans. Microw. Theory Techn. 48, 1045–1052 (2000)CrossRefGoogle Scholar
  62. 62.
    Ansari, H.R., et al.: Design and simulation of a novel RF MEMS shunt capacitive switch with a unique spring for Ka-band application. J. Microsyst. Technol. 25(2), 531–540 (2018)CrossRefGoogle Scholar
  63. 63.
    Mafinejad, Y., et al.: Design and simulation of a high isolation RF MEMS shunt capacitive switch for C-K band. IEICE Electron. Exp. 10, 1–8 (2013)CrossRefGoogle Scholar
  64. 64.
    Rebeiz, G.M., Entesari, K., Reines, I.C., Park, S.-J., El-Tanani, M., Grichener, A., Brown, A.R., et al.: Tuning into RF MEMS. IEEE Microw. Mag. 10, 55–72 (2009)CrossRefGoogle Scholar
  65. 65.
    Ma, L.Y., et al.: A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. In: Microsystem Technologies (2017)CrossRefGoogle Scholar
  66. 66.
    Ravirala, A.K., et al.: Design and performance analysis of uniform meander structured RF MEMS shunt switch along with perforations. J. Microsyst. Technol. 24(2), 901–908 (2017)CrossRefGoogle Scholar
  67. 67.
    Jayavardhani, K., et al.: Design and simulation of low actuation voltage shunt RF MEMS shunt capacitive switch with serpentine flexures & regular perforations. Int. J. Eng. Technol. 7, 4–8 (2018)CrossRefGoogle Scholar
  68. 68.
    Sharma, A., Shah, A., Bharti, R.: Design & simulation of low actuation voltage perforated shunt RF MEMS switch. Int. J. Eng. Tech. Res. (IJETR) 3(6) (2015)Google Scholar
  69. 69.
    Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L., Baishya, S.: Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect. Solid-State Electron. 137, 85–94 (2017)CrossRefGoogle Scholar
  70. 70.
    Ashby, M.F.: Material Selection in Mechanical Design, 2nd edn. Butterworth-Heinemann, Oxford, UK (1999)Google Scholar
  71. 71.
    Guisbiers, G., et al.: Material selection procedure for RF-MEMS. Microelectron. Eng. 87, 1792–1795 (2010)CrossRefGoogle Scholar
  72. 72.
    Lahiri, S.K., Saha, H., Kundu, A.: RF switch: an overview at a glance. In: 4th International Conference on Computer and Devices for Communication, Kolkata, Dec 2009Google Scholar
  73. 73.
    Callister, W.D.: Material Science and Engineering: An Introduction, 7th edn. Wiley, New York (2007)Google Scholar
  74. 74.
    Jlassi, B., Merdassi, A.: Design methodology of a high power RF MEMS switch for wireless communication. In: 4th Annual Caneus Fly by Workshop, Montreal QC, June 2011Google Scholar
  75. 75.
    Wang, G., et al.: A high performance tunable RF MEMS switch using barium strontium titanate (BST) dielectrics for reconfigurable antennas and phased arrays. In: IEEE Antennas and Wireless Propagation Letters, vol. 4, Aug 2005Google Scholar
  76. 76.
    Tan, S.G., et al.: Electromechanical modelling of high power RF-MEMS switches with ohmic contact. In: 2005 European Microwave Conference, Oct 2005Google Scholar
  77. 77.
    Renies, I., Pillans, B., Rebeiz, G.M.: Thin-film aluminium RF MEMS switched capacitor with stress tolerance and temperature stability. J. Microelectromech. Syst. 20, 193–202 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PhysicsPeriyar Maniammai Institute of Science and TechnologyThanjavurIndia
  2. 2.Department of Electronics and Communication EngineeringPeriyar Maniammai Institute of Science and TechnologyThanjavurIndia

Personalised recommendations