Advertisement

Determination of Contents Based on Learning Styles Through Artificial Intelligence

  • Jesus Silva
  • Lissette Hernandez
  • Jenny Romero
  • Noel Varela
  • Hugo Hernández Palma
  • Nataly Orellano Llinás
  • Yasmin Florez
  • Carlos Vargas Mercado
Chapter
  • 29 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

The study presents the development of a platform for structuring adaptive courses based on active, reflexive, theoretical and pragmatic learning styles using artificial intelligence techniques. To this end, the following phases were followed: search, analysis and classification of information about the process of generating content for courses; analysis and coding of the software component for generating content according to learning styles; and application of tests for validation and acceptance. The main contribution of the paper is the development of a model using neural networks and its integration in an application server to determine the contents that correspond to the active, reflexive, theoretical and pragmatic learning styles.

Keywords

Artificial intelligence Neural networks Learning styles 

References

  1. 1.
    Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of Database Systems, pp. 532–538. Recuperado el 26 de diciembre de 2014, de http://leiting.net/papers/ency-cross-validation.pdf (2009)
  2. 2.
    Jamae, J., Johnson P.: JBOSS in Action. Manning Publications Co. Recuperado el 26 de diciembre de 2014, de http://testa.roberta.free.fr/My%20Books/Computer%20programming/Java/Manning%20%20JBoss%20in%20Action%20Configuring%20the%20JBoss%20Application%20Server.pdf (2009)
  3. 3.
    Jendrock, E., Cervera-Navarro, R., Evans, I., Gollapudi, D., Haase, K., Markito, W., Srivathsa, C.: The Java JEE 6 Tutorial. Recuperado el 26 de diciembre de 2014, de http://docs.oracle.com/javaee/6/tutorial/doc (2013)
  4. 4.
    Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)Google Scholar
  5. 5.
    Yuan, M., Ouyang, Y., Xiong, Z., Sheng, H.: Sentiment classification of web review using association rules. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol. 8029. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4(2–3), 163–192 (2000)CrossRefGoogle Scholar
  7. 7.
    Amelec, Viloria, Carmen, Vasquez: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)CrossRefGoogle Scholar
  8. 8.
    Viloria, A., Lezama, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Proc. Comput. Sci. 151, 1201–1206 (2019)CrossRefGoogle Scholar
  9. 9.
    Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., Cali, E.G.: . Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data, pp. 3–11. Springer, Cham (2018)CrossRefGoogle Scholar
  10. 10.
    Cagliero, L., Fiori, A.: Analyzing Twitter user behaviors and topic trends by exploiting dynamic rules. In: Behavior Computing: Modeling, Analysis, Mining and Decision, pp. 267–287. Springer (2012)Google Scholar
  11. 11.
    Erlandsson, F., Bródka, P., Borg, A., Johnson, H.: Finding influential users in social media using association rule learning. Entropy 18, 164 (2016)CrossRefGoogle Scholar
  12. 12.
    Meduru, M., Mahimkar, A., Subramanian, K., Padiya, P.Y., Gunjgur, P.N.: Opinion mining using Twitter feeds for political analysis. Int. J. Comput. (IJC) 25(1), 116–123 (2017)Google Scholar
  13. 13.
    Abascal-Mena R., López-Ornelas, E., Zepeda-Hernández, J.S.: User generated content: an analysis of user behavior by mining political tweets. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. OCSC 2013. Lecture Notes in Computer Science, vol. 8029. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Dehkharghani, R., Mercan, H., Javeed, A., Saygin, Y.: Sentimental causal rule discovery from Twitter. Expert. Syst. Appl. 41(10), 4950–4958 (2014)CrossRefGoogle Scholar
  15. 15.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363–370 (2005)Google Scholar
  16. 16.
    Viloria, A., et al.: Integration of data mining techniques to PostgreSQL database manager system. Proc. Comput. Sci. 155, 575–580 (2019)CrossRefGoogle Scholar
  17. 17.
    Torres Samuel, M., Vásquez, C., Viloria, A., Hernández Fernandez, L., Portillo Medina, R.: Analysis of patterns in the university Word Rankings Webometrics, Shangai, QS and SIRScimago: case Latin American. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligent and Lecture Notes in Bioinformatics (2018)CrossRefGoogle Scholar
  18. 18.
    Lanzarini, L., Villa-Monte, A., Ronchetti, F.: SOM + PSO. A novel method to obtain classification rules. J. Comput. Sci. Technol. (JCS&T) 15(1), 15–22 (2015)Google Scholar
  19. 19.
    Lanzarini, L., Villa Monte, A., Aquino, G., De Giusti, A.: Obtaining classification rules using lvqPSO advances in swarm and computational intelligence. In: Lecture Notes in Computer Science, vol. 6433, pp. 183–193. Springer, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Martinez, P.: Investigación y análisis de los estilos de aprendizaje del profesorado y alumnos del primer ciclo de educación secundaria obligatoria en el ámbito del C. P. R. de LAREDO. CANTABRIA. I Congreso Internacional de estilos de aprendizaje. Recuperado el 9 de junio de 2014, de http://www.estilosdeaprendizaje.es/PMGeijo.pdf (2004) (Consulta: 9 de junio del 2014)

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jesus Silva
    • 1
  • Lissette Hernandez
    • 2
  • Jenny Romero
    • 3
  • Noel Varela
    • 3
  • Hugo Hernández Palma
    • 4
  • Nataly Orellano Llinás
    • 5
  • Yasmin Florez
    • 5
  • Carlos Vargas Mercado
    • 4
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad del AtlánticoPuerto ColombiaColombia
  3. 3.Universidad de la Costa (CUC)BarranquillaColombia
  4. 4.Corporación Universitaria LatinoamericanaBarranquillaColombia
  5. 5.Corporación Universitaria Minuto de Dios—UNIMINUTOBarranquillaColombia

Personalised recommendations