Advertisement

FastICA Algorithm Applied to Scattered Electromagnetic Signals

  • M. Pushyami Rao
  • R. Sunitha
  • Dhanesh G. KurupEmail author
Chapter
  • 30 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

In this article, a method based on blind source separation (BSS) is applied for separating multiple scattered electromagnetic signals. For BSS, we used fast independent component analysis (FastICA) algorithm. It is shown that individual echoes from the targets can be separated from multiple electromagnetic echoes collected at different spatially separated antennas. For generating the test data, we used a numerical electromagnetic tool. It is concluded that FastICA has the potential for separating echoes from multiple targets in the area of radar systems.

References

  1. 1.
    Yu, X., Hu, D., Xu, J.: Blind Source Separation: Theory and Applications. Wiley, New York (2013)Google Scholar
  2. 2.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley Interscience (2001)Google Scholar
  3. 3.
    Hyvärinen, Aapo: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural New. 10(3), 626–634 (1999)CrossRefGoogle Scholar
  4. 4.
    Saideep, N., Kurup, D.G.,Tripathi, S.: Detection of closely spaced sinusoids in noise using FastICA algorithm. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 3059–309. IEEE (2017)Google Scholar
  5. 5.
    Carlos, E., Takada, J.I.: ICA based blind source separation applied to radio surveillance. IEICE Trans. Commun. 86(12), 3491–3497 (2003)Google Scholar
  6. 6.
    Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287–314 (1994)CrossRefGoogle Scholar
  7. 7.
    Aapo Hyvärinen, E.: Oja: independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)CrossRefGoogle Scholar
  8. 8.
    Mansour, A., Barros, A.K., Ohnishi, N.: Blind separation of sources: methods, assumptions and applications. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 83(8), 1498–1512 (2000)Google Scholar
  9. 9.
    Lozano, H.M., Moreno, L.N.O.: Blind source separation of audio signals using independent component analysis and wavelets. In: 2011 21st International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 152–157. IEEE (2011)Google Scholar
  10. 10.
    Vidal, F., Duarte, A., Medeiros, A., Huyart, B.: Blind calibration of five-port receiver based on Independent Component Analysis (ICA). In: Wireless Telecommunications Symposium (WTS), pp. 1–4. Phoenix, AZ (2013)Google Scholar
  11. 11.
    Ichige, K., Imai, M., Arai, H.: Fastica-based blind signal separation and its application to radio surveillance. In: IEEE Workshop on Statistical Signal Processing Proceedings, USA, pp. 546–550 (2007)Google Scholar
  12. 12.
    Wang, S., Jin, G., Jin, G., Wang, Y.: Method to remove the interference in reflected wave of passive radar based on the improved FastICA. In: 9th International Conference on Electronic Measurement and Instruments, Beijing, pp. 27–30 (2009)Google Scholar
  13. 13.
    Ionescu, V., Hnatiuc, M.: Fetal heart rate detection and monitoring from noninvasive abdominal ECG recordings. In: E-Health and Bioengineering Conference (EHB), pp. 1–4. IEEE (2015)Google Scholar
  14. 14.
    Zarzoso, V., Comon, P., Kallel, M.: How fast is Fastica? In: 14th European Signal Processing Confernce, Florence, pp. 1–5 (2006)Google Scholar
  15. 15.
    Candan, C.: Analysis and further improvement of fine resolution frequency estimation method from three DFT samples. IEEE Sig. Proc. Lett. 20(9), 913–916 (2013)CrossRefGoogle Scholar
  16. 16.
    Narayanan, G., Kurup, D.G.: Detection of a real sinusoid in noise using differential evolution algorithm. In: Advances in Intelligent Systems and Computing, vol. 741, pp. 77–83 (2019)Google Scholar
  17. 17.
    Shruthi, N., Mathur, P., Kurup, D.G.: Performance of ultra wideband (UWB) pulsed Doppler radar for heart rate and respiration rate monitoring in noise. In: International Conference on Advances in Computing, Communications and Informatics, ICACCI, pp. 722–725 (2018)Google Scholar
  18. 18.
    Al-Rizzo, H.:Simulation of horn antenna using HFSS (2005).  https://doi.org/10.13140/RG.2.1.1551.1202
  19. 19.
    Kaller, D., Schuster, C., Kwark, Y., Altabella, D., Truong, B., Chen, Z., Klink, E.: Using s-parameters successfully in time domain link simulations. In: IEEE 14th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 95–98. IEEE (2005)Google Scholar
  20. 20.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. Pushyami Rao
    • 1
  • R. Sunitha
    • 1
  • Dhanesh G. Kurup
    • 1
    Email author
  1. 1.Department of Electronics and Communication EngineeringAmrita School of Engineering, Amrita Vishwa VidyapeethamBengaluruIndia

Personalised recommendations