Advertisement

Classification of Digitized Documents Applying Neural Networks

  • Amelec ViloriaEmail author
  • Noel Varela
  • Omar Bonerge Pineda Lezama
  • Nataly Orellano Llinás
  • Yasmin Flores
  • Hugo Hernández Palma
  • Carlos Vargas Mercado
  • Freddy Marín-González
Chapter
  • 29 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

The exponential increase of the information available in digital format during the last years and the expectations of future growth make it necessary for the organization of information in order to improve the search and access to relevant data. For this reason, it is important to research and implement an automatic text classification system that allows the organization of documents according to their corresponding category by using neural networks with supervised learning. In such a way, a faster process can be carried out in a timely and cost-efficient way. The criteria for classifying documents are based on the defined categories.

Keywords

Text categorization Artificial neural networks Multilayer perceptron 

References

  1. 1.
    Vásquez, A.C., Lazo, O.R., Agnelli, R.C.: Categorización de Textos mediante Máquinas de Soporte Vectorial. Revistas Signos, pp. 1–24 (2011)Google Scholar
  2. 2.
    Mendoza, M., Ortiz, I., Rojas, V.: Categorización de texto en bases documentales a partir de modelos computacionales liviano. Revista de investigación de Sistemas e Informática. 10(1), 2–12 (2013)Google Scholar
  3. 3.
    Pérez, P.M., Colarte, J. (Feb, 2007) Multimedia para discapacitados. Presentada en: Congreso y Feria Internacional Informática 2007 (en línea). Disponible en: http://www.informaticabana.cu/eventovirtual/educacion/discapacitados.pdf
  4. 4.
    Bechara, J.E.A., Cruz, J.C.T., Ceballos, H.V.: Predicciones de modelos econométricos y redes neuronales: el caso de la acción de SURAMINV. Semestre Económico Universidad de Medellín. 12(25), 95–109 (2009). Available from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012063462009000300007&lng=en&nrm=i-so. Access on 07 Aug 2017
  5. 5.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pp. 487–499 (1994)Google Scholar
  6. 6.
    Hahsler, M., Karpienko, R.: Visualizing association rules in hierarchical groups. J. Bus. Econ. 87, 317–335 (2017)Google Scholar
  7. 7.
    Silverstein, C., Brin, S., Motwani, R., Ullman, J.: Scalable techniques for mining causal structures. Data Min. Knowl. Discov. 4(2–3), 163–192 (2000)CrossRefGoogle Scholar
  8. 8.
    Amelec, Viloria, Carmen, Vasquez: Relationship between variables of performance social and financial of microfinance institutions. Adv. Sci. Lett. 21(6), 1931–1934 (2015)CrossRefGoogle Scholar
  9. 9.
    Viloriaa, A., Lezamab, O.B.P.: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput. Sci. 151, 1201–1206 (2019)CrossRefGoogle Scholar
  10. 10.
    Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernandez, L., Cali, E. G.: Database performance tuning and query optimization. In: International Conference on Data Mining and Big Data. Springer, Cham, pp. 3–11 (2018)CrossRefGoogle Scholar
  11. 11.
    Viloria, A., et al.: Integration of data mining techniques to postgreSQL database manager system. Procedia Comput. Sci. 155, 575–580 (2019)CrossRefGoogle Scholar
  12. 12.
    Lanzarini, L., Villa Monte, A., Aquino, G., De Giusti, A.: Obtaining classification rules using lvqPSO In: Advances in Swarm and Computational Intelligence. Lecture Notes in Computer Science. vol. 6433, pp. 183–193. Springer, Berlin, Heidelberg (2015)CrossRefGoogle Scholar
  13. 13.
    Borja-Borja, M.G.: Algoritmo de Entrenamiento de una Neurona Artificial Perceptrón para Reconocimiento de Caracteres, Aplicando Principios Heurísticos. Revista ECIPerú. 6(1), 4 (2009)Google Scholar
  14. 14.
    Alonso, M.Á.L.: Las estructuras conceptuales de representación del conocimiento en internet. Scire: representación y organización del conocimiento. 6(1), 107–123 (2000)Google Scholar
  15. 15.
    Torrez Torrez, E.D.: Sistema inteligente para la detección de conversaciones con posible contenido pedofílico basado en redes neuronales, Doctoral dissertation (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Amelec Viloria
    • 1
    Email author
  • Noel Varela
    • 1
  • Omar Bonerge Pineda Lezama
    • 2
  • Nataly Orellano Llinás
    • 3
  • Yasmin Flores
    • 3
  • Hugo Hernández Palma
    • 4
  • Carlos Vargas Mercado
    • 4
  • Freddy Marín-González
    • 1
  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras
  3. 3.Corporación Universitaria Minuto de Dios—UNIMINUTOBarranquillaColombia
  4. 4.Corporación Universitaria LatinoamericanaBarranquillaColombia

Personalised recommendations