Advertisement

Review of Parallel Processing Methods for Big Image Data Applications

  • K. Vigneshwari
  • K. Kalaiselvi
Chapter
  • 33 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

The coexistence of technologies, like big data application, cloud computing, and the numerous images in the Web has paved the need for new image processing algorithms that exploit the processed image for diverse applications. There arises a need for new image processing algorithms to utilize the processed image for diverse applications though many techniques with variations exist. Ultimately, the enduring issue is to enhance the effectiveness of huge image processing and to maintain the combination of the same with recent works. This paper presents a review of the newest progress in researches on parallel processing methods for the processing of big data. Initially, the reviews about the parallel processing methods were carried out by highlighting some promising parallel processing methods in recent studies, such as the representation of MapReduce (MR) framework, distributed, parallel methods, and Hadoop framework. Subsequently, focus on analysis and deliberations about the challenges and promising solutions of parallel computing methods on big data in various applications and on image processing applications were made and concluded with a summary of number of open problems and research areas.

Keywords

Big data Image processing MapReduce (MR) framework Hadoop Parallel processing methods Distributed system and applications 

References

  1. 1.
    Tanenbaum, A.S., Van Steen, M.: Distributed Systems: Principles and Paradigms, pp. 7–8. Prentice Hall, Upper Saddle River, NJ (2007)zbMATHGoogle Scholar
  2. 2.
    Fleischmann, A.: Distributed Systems: Software Design and Implementation, pp. 4–5. Springer, Berlin, Heidelberg (2012)Google Scholar
  3. 3.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  4. 4.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10(10–10), 1–7 (2010)Google Scholar
  5. 5.
    White T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media (2009)Google Scholar
  6. 6.
    Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10 (2010)Google Scholar
  7. 7.
    Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.: A comparison of approaches to large-scale data analysis. In: Proceedings of the 2009 ACM SIGMOD International Conference on Management of data, pp. 165–178 (2009)Google Scholar
  8. 8.
    Sweeney, C., Liu, L., Arietta, S., Lawrence, J.: HIPI: a Hadoop Image Processing Interface for Image-Based Mapreduce Tasks. University of Virginia, Chris (2011)Google Scholar
  9. 9.
    Anderson, E., Tucek, J.: Efficiency matters! ACM SIGOPS Operating Syst. Rev. 44(1), 40–45 (2010)CrossRefGoogle Scholar
  10. 10.
    Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.: A platform for scalable one-pass analytics using Map reduce. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 985–996 (2011)Google Scholar
  11. 11.
    Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of mapreduce: an in-depth study. Proc. VLDB Endowment 3(1–2), 472–483 (2010)CrossRefGoogle Scholar
  12. 12.
    Mohammed, E.A., Far, B.H., Naugler, C.: Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min. 7(1), 1–23 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, W., Haerian, K., Salmasian, H., Harpaz, R., Chase, H., Friedman, C.: A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. In: AMIA annual symposium proceedings: 2011. American Medical Informatics Association, Bethesda, Maryland, USA, pp. 1464–1471 (2011)Google Scholar
  14. 14.
    Nguyen, A.V., Wynden, R., Sun, Y.: HBase, MapReduce, and integrated data visualization for processing clinical signal data. In: AAAI Spring Symposium: Computational Physiology (2011)Google Scholar
  15. 15.
    Wang, Y., McCleary, D., Wang, C.-W., Kelly, P., James, J., Fennell, D., Hamilton, P.: Ultra-fast processing of gigapixel tissue microarray images using high performance computing. Cell. Oncol. 34(5), 495–507 (2011)CrossRefGoogle Scholar
  16. 16.
    Wei, S., Wang, F., Deng, H., Liu, C., Dai, W., Liang, B., Mei, Y., Shi, C., Liu, Y., Wu, J.: OpenCluster: a flexible distributed computing framework for astronomical data processing. Publ. Astron. Soc. Pac. 129(972), 024001 (2016)CrossRefGoogle Scholar
  17. 17.
    Wiley, K., Connolly, A., Gardner, J., Krughoff, S., Balazinska, M., Howe, B., Kwon, Y., Bu, Y.: Astronomy in the cloud: using mapreduce for image co-addition. Publ. Astron. Soc. Pac. 123(901), 366–380 (2011)CrossRefGoogle Scholar
  18. 18.
    Kohlwey, E., Sussman, A., Trost, J., Maurer, A.: Leveraging the cloud for big data biometrics: meeting the performance requirements of the next generation biometric systems. In: IEEE World Congress on Services (SERVICES), pp. 597–601 (2011)Google Scholar
  19. 19.
    Vemula, S., Crick, C.: Hadoop image processing framework. In: IEEE International Congress on Big Data (BigData Congress), pp. 506–513 (2015)Google Scholar
  20. 20.
    Wang, C., Hu, F., Hu, X., Zhao, S., Wen, W., Yang, C.: A Hadoop-based distributed framework for efficient managing and processing big remote sensing images. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2(4), 63–67 (2015)CrossRefGoogle Scholar
  21. 21.
    Almeer, M.H.: Cloud Hadoop map reduce for remote sensing image analysis. J. Emerg. Trends Comput. Inf. Sci. 3(4), 637–644 (2012)Google Scholar
  22. 22.
    Kune, R., Konugurthi, P.K., Agarwal, A., Chillarige, R.R., Buyya, R.: XHAMI–extended HDFS and MapReduce interface for big data image processing applications in cloud computing environments. Softw. Pract. Exp. 47(3), 455–472 (2017)Google Scholar
  23. 23.
    Ryu, C., Lee, D., Jang, M., Kim, C., Seo, E.: Extensible video processing framework in apache Hadoop. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), vol. 2, pp. 305–310 (2013)Google Scholar
  24. 24.
    Kim, M., Cui, Y., Han, S., Lee, H.: Towards efficient design and implementation of a hadoop-based distributed video transcoding system in cloud computing environment. Int. J. Multimedia Ubiquitous Eng. 8(2), 213–224 (2013)Google Scholar
  25. 25.
    Moise, D., Shestakov, D., Gudmundsson, G., Amsaleg, L.: Terabytescale image similarity search: experience and best practice. In: IEEE International Conference on Big Data, pp. 674–682 (2013)Google Scholar
  26. 26.
    Sozykin, A., Epanchintsev, T.: MIPr-a framework for distributed image processing using Hadoop. In: 9th International Conference on Application of Information and Communication Technologies (AICT), pp. 35–39 (2015)Google Scholar
  27. 27.
    Yamamoto, M., Kaneko, K.: Parallel image database processing with MapReduce and performance evaluation in pseudo distributed mode. Int. J. Electron. Commer. Stud. 3(2), 211–228 (2012)CrossRefGoogle Scholar
  28. 28.
    Epanchintsev, T., Sozykin, A.: Processing large amounts of images on Hadoop with OpenCV. In: CEUR Workshop Proceedings, vol. 1513: Proceedings of the 1st Ural Workshop on Parallel, Distributed, and Cloud Computing for Young Scientists (Ural-PDC 2015), pp. 137–143 (2015)Google Scholar
  29. 29.
    Liu, T., Liu, Y., Li, Q., Wang, X.R., Gao, F., Zhu, Y.C., Qian, D.P.: SEIP: system for efficient image processing on distributed platform. J. Comput. Sci. Technol. 30(6), 1215–1232 (2015)CrossRefGoogle Scholar
  30. 30.
    Powell, M., Rossi, R., Shams, K.: A scalable image processing framework for gigapixel mars and other celestial body images. In: IEEE in Aerospace Conference, pp. 1–11 (2010)Google Scholar
  31. 31.
    Dong, L., Lin, Z., Liang, Y., He, L., Zhang, N., Chen, Q., Cao, X., Izquierdo, E.: A hierarchical distributed processing framework for big image data. IEEE Trans. Big Data 2(4), 297–309 (2016)CrossRefGoogle Scholar
  32. 32.
    Bajcsy, P., Vandecreme, A., Amelot, J., Nguyen, P., Chalfoun, J., Brady, M.: Terabyte-sized image computations on hadoop cluster platforms. In: IEEE International Conference on Big Data, pp. 729–737 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • K. Vigneshwari
    • 1
  • K. Kalaiselvi
    • 2
  1. 1.Department of Computer ScienceVELS Institute of Science, Technology and Advanced StudiesChennaiIndia
  2. 2.Department of Computer Science, School of Computing SciencesVels Institute of Science Technology and Advanced Studies (VISTAS), Formerly Vels UniversityChennaiIndia

Personalised recommendations