Advertisement

Enhancing the Performance of Software-Defined Wireless Mesh Network

  • Nithin Shastry
  • T. G. Keerthan Kumar
Chapter
  • 31 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

In a software-defined wireless mesh network, a centralized manner of managing and monitoring of the network occurs. The software-defined network (SDN) is the future of the upcoming generation network paradigm by separating control plane and data plane such that network management and optimization can be conducted in a centralized manner using global network information. In this paper, we proposed a novel architecture of software-defined wireless mesh networks to identify the issues of traffic balancing introduced due to node mobility. In order to reduce the overall response time of the SDN controller in the dynamic network topology, the new model predicts the probability of the link failure in the topology. Once the link failure is predicted, alternate selection of various routes proposed through the effective stability of traffic in the network is achieved and thereby overhead of the control plane is minimized. Utilizing ns-3 to efficiently address the above problem, we can enhance the network throughput and packet delivery fraction and minimize the delay in the network. Finally, performance is evaluated via extensive simulations.

Keywords

Software-defined network (SDN) Performance Wireless mesh networks Dynamic spectrum access NS3 tools OLSR daemon Ad hoc network Cognitive radio Network coding Radio spectrum management Throughput 

References

  1. 1.
    Peng, Y., Guo, L., Deng, Q., Ning, Z., Zhang, L.: A novel hybrid routing forwarding algorithm in SDN enabled wireless mesh networks. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, New York, NY, pp. 1806–1811 (2015). https://doi.org/10.1109/hpcc-css-icess.2015.271
  2. 2.
    Detti, A., Pisa, C., Salsano, S., Blefari-Melazzi, N.: Wireless mesh software defined networks (wmSDN). In: 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, pp. 89–95 (2013). https://doi.org/10.1109/wimob.2013.6673345
  3. 3.
    Abolhasan, M., Lipman, J., Ni, W., Hagelstein, B.: Software-defined wireless networking: centralized, distributed, or hybrid? Netw. IEEE 29, 32–38 (2015). J. Netw. Comput. Appl. 61 n.C, 199–221 (2016). doi https://doi.org/10.1016/j.jnca.2015.11.012CrossRefGoogle Scholar
  4. 4.
    Yu, H.C., Quer, G., Rao, R.R.: Wireless SDN mobile ad hoc network: from theory to practice. In: 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1–7 (2017).  https://doi.org/10.1109/icc.2017.7996340
  5. 5.
    Labraoui, M., Boc, M., Fladenmuller, A.: Self-configuration mechanisms for SDN deployment in wireless mesh networks. In: 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, pp. 1–4 (2017).doi: 10.1109/WoWMoM.2017.7974352Google Scholar
  6. 6.
    Magdalene, W., Let, G.S.: Implementation of dynamic generation size adjustment algorithm for cognitive radio ad-hoc network. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 119–122 (2016).  https://doi.org/10.1109/wispnet.2016.7566103
  7. 7.
    Fathy, M., Tammam, A., Saafan, A.: Mitigating the impact of malicious behavior via utilizing multiple routes in a cooperative sensing cognitive radio network. In: 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Putrajaya, pp. 247–252 (2017).  https://doi.org/10.1109/scored.2017.8305384
  8. 8.
    Laghate, M., Cabric, D.: Cooperatively learning footprints of multiple incumbent transmitters by using cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 3(3), 282–297 (2017).  https://doi.org/10.1109/TCCN.2017.2710309CrossRefGoogle Scholar
  9. 9.
    AlShammari, T., Hamdaoui, B., Guizani, M., Rayes, A.: Overcoming user selfishness in DSA systems through credit-based resource allocation. In: 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, pp. 318–323 (2014).  https://doi.org/10.1109/icc.2014.6883338
  10. 10.
    Choi, H., Lee, I., Lee, H.: Delay analysis of carrier sense multiple access with collision resolution. J. Commun. Netw. 17(3), 275–285 (2015).  https://doi.org/10.1109/JCN.2015.000050CrossRefGoogle Scholar
  11. 11.
    Fu, C.P., Liew, S.C.: TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21(2), 216–228 (2003).  https://doi.org/10.1109/jsac.2002.807336CrossRefGoogle Scholar
  12. 12.
    Keerthan Kumar, T.G., Virupakshaiah, H.K., Nanda K.V.: Ensuring an online chat mechanism with accountability to sharing the non-downloadable file from the cloud. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, pp. 718–721 (2016).  https://doi.org/10.1109/icatcct.2016.7912093
  13. 13.
    Chen, Z., et al.: A novel bandwidth estimation algorithm of TCP westwood in typical LTE scenarios. In: 2015 IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, pp. 1–5 (2015). https://doi.org/10.1109/iccchina.2015.7448600
  14. 14.
    Alrshah, M.A., Othman, M.: Performance evaluation of parallel TCP, and its impact on bandwidth utilization and fairness in high-BDP networks based on test-bed. In: 2013 IEEE 11th Malaysia International Conference on Communications (MICC), Kuala Lumpur, pp. 23–28 (2013).  https://doi.org/10.1109/micc.2013.6805793
  15. 15.
    Jiang, X., Jin, G.: CLTCP: an adaptive TCP congestion control algorithm based on congestion level. IEEE Commun. Lett. 19(8), 1307–1310 (2015).  https://doi.org/10.1109/LCOMM.2015.2447541CrossRefGoogle Scholar
  16. 16.
    Wang, J., Wen, J., Zhang, J., Xiong, Z., Han, Y.: TCP-FIT: an improved TCP algorithm for heterogeneous networks. J. Netw. Comput. Appl. 71, pp. 167–180 (2016). ISSN 1084-8045.  https://doi.org/10.1016/j.jnca.2016.03.020CrossRefGoogle Scholar
  17. 17.
    Le, T.A., Hong, C.S., Razzaque, M.A., Lee, S., Jung, H.: ecMTCP: an energy-aware congestion control algorithm for multipath TCP. IEEE Commun. Lett. 16(2), 275–277 (2012).  https://doi.org/10.1109/LCOMM.2011.120211.111818CrossRefGoogle Scholar
  18. 18.
    Lee, H.-J., Lim, J.-T.: Congestion control for streaming service in IEEE 802.11 multihop networks. Commun. IET. 4, 1415–1422 (2010).  https://doi.org/10.1049/iet-com.2009.0376MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    O’malley, S.W., Brakmo, L.S., Peterson, L.L.: TCP Vegas: New techniques for congestion detection and avoidance. ACM Comput. Commun. Rev. (CCR) 24 (1994).  https://doi.org/10.1145/190809.190317CrossRefGoogle Scholar
  20. 20.
    Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006).  https://doi.org/10.1109/TNET.2006.886335CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nithin Shastry
    • 1
  • T. G. Keerthan Kumar
    • 1
  1. 1.Information Science and EngineeringSiddaganga Institute of TechnologyTumakuruIndia

Personalised recommendations