Advertisement

Other Commonly Used Statistical Procedures

  • Ray W. Cooksey
Chapter
  • 34 Downloads

Abstract

In this chapter, we explore some other commonly used but less ‘traditional’ statistical procedures. While these procedures are commonly reported in behavioural and social research, they tend not to be well-covered in standard statistical texts. Procedures discussed and illustrated include: reliability analysis & classical item analysis (useful for assessing measurement quality); data screening & missing value analysis (useful for preliminary explorations looking for anomalous data patterns); confidence intervals (useful for assessing the precision of statistical estimates); bootstrapping and jackknifing (useful for estimating errors associated with statistic estimates where traditional methods are not available or do not work); time series analysis (useful for understanding data patterns over time, with or without an intervention); confirmatory factor analysis (useful for evaluating theorised factor structures); structural equation models (useful for evaluating theorised causal models); and meta-analysis (useful for exploring data patterns evident in samples of published, and occasionally unpublished, research).

Keywords

Reliability analysis Item analysis Data screening Missing value analysis Confidence intervals Bootstrapping Jackknifing Time series analysis Confirmatory factor analysis Structural equation modelling Meta-analysis 

References

References for Procedure 8.1

  1. Athanasou, J. A. (1997). Introduction to educational testing. Wentworth Falls: Social Science Press, ch. 11 and 14.Google Scholar
  2. Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Beverly Hills: Sage Publications.CrossRefGoogle Scholar
  3. Cooksey, R. W., & McDonald, G. (2019). Surviving and thriving in postgraduate research (2nd ed.). Singapore: Springer, ch. 18.CrossRefGoogle Scholar
  4. Gwet, K. L. (2012). Handbook of inter-rater reliability (3rd ed.). Gaithersburg: Advanced Analytics, LLC.Google Scholar
  5. SPSS. (1998). Using SPSS for item analysis: More reliable test assessment using statistics, SPSS White Paper. http://www.spsstools.net/Syntax/ItemAnalysis/UsingSPSSforItemAnalysis.pdf. Accessed 16 Sept 2019.
  6. Thorndike, R. L., & Thorndike, R. M. (1997). Reliability. In J. P. Keeves (Ed.), Educational research, methodology, and measurement: An international handbook (2nd ed., pp. 755–790). Oxford: Pergamon Press.Google Scholar
  7. Waltz, C. F., Strickland, O. L., & Lenz, E. R. (2010). Measurement in nursing and health research (4th ed.). New York: Springer Publishing.Google Scholar

Useful Additional Reading for Procedure 8.1

  1. Allen, P., Bennett, K., & Heritage, B. (2019). SPSS Statistics: A practical guide (4th ed.). Cengage Learning Australia Pty: South Melbourne, ch. 16.Google Scholar
  2. George, D., & Mallery, P. (2019). IBM SPSS statistics 25 step by step: A simple guide and reference (15th ed.). New York: Routledge, ch. 18.CrossRefGoogle Scholar
  3. Everitt, B. S. (1995). Making sense of statistics in psychology: A second level course. Oxford: Oxford University Press, ch. 13.Google Scholar
  4. Murphy, K. R., & Davidshofer, C. O. (2004). Psychological testing: Principles and applications (6th ed.). Englewood Cliffs: Prentice-Hall, ch. 6, 7, and 10.Google Scholar
  5. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York: McGraw-Hill, ch. 7. [a classic text in measurement theory].Google Scholar
  6. Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis (2nd ed.). New York: McGraw-Hill, ch. 3.Google Scholar
  7. Thorndike, T. L. (1982). Applied psychometrics. Boston: Houghton-Mifflin, ch. 6. [another classic text in measurement theory].Google Scholar
  8. Walsh, W. B., & Betz, N. E. (2000). Tests and assessment (4th ed.). Englewood Cliffs: Prentice-Hall, ch. 3.Google Scholar

References for Procedure 8.2

  1. Allison, P. D. (2001). Missing data. Thousand Oaks: Sage Publications.zbMATHGoogle Scholar
  2. Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. London: Sage Publications, ch. 6.Google Scholar
  3. Hair, J. F., Black, B., Babin, B., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River: Pearson Education, ch. 2.Google Scholar
  4. Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). New York: Pearson Education, ch. 4.Google Scholar

Useful Additional Reading for Procedure 8.2

  1. Beaton, A. F. (1997). Missing scores in survey research. In J. P. Keeves (Ed.), Educational research, methodology, and measurement: An international handbook (2nd ed., pp. 763–766). Oxford: Pergamon Press.Google Scholar
  2. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah: Lawrence Erlbaum Associates, ch. 4, 10 & 11.Google Scholar
  3. Field, A. (2018). Discovering statistics using SPSS for Windows (5th ed.). Los Angeles: Sage Publications, ch. 6.zbMATHGoogle Scholar
  4. Meyers, L. S., Gamst, G. C., & Guarino, A. (2017). Applied multivariate research: Design and interpretation (3rd ed.). Thousand Oaks: Sage Publications, ch. 3A, 3B.Google Scholar

References for Procedure 8.3

  1. Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61(4), 532–574.MathSciNetCrossRefGoogle Scholar
  2. Field, A. (2018). Discovering statistics using SPSS for Windows (5th ed.). Los Angeles: Sage Publications, section 2.8 and 2.99.zbMATHGoogle Scholar
  3. Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R. London: Sage Publications, ch. 2, 6, 7, 9.Google Scholar
  4. Smithson, M. J. (2000). Statistics with confidence. London: Sage Publications, ch. 5.Google Scholar
  5. Smithson, M. J. (2003). Confidence intervals. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  6. Thompson, B. (2002). What future quantitative social science research could look like: Confidence intervals for effect sizes. Educational Researcher, 31(3), 25–32.CrossRefGoogle Scholar

Useful Additional Reading for Procedure 8.3

  1. Agresti, A. (2018). Statistical methods for the social sciences (5th ed.). Boston: Pearson, Ch. 5.Google Scholar
  2. Dracup, C. (2005). Confidence intervals. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 1, pp. 366–375). Chichester: Wiley.Google Scholar
  3. Thompson, B. (2006). Foundations of behavioral statistics: An insight-based approach. New York: The Guilford Press, ch. 7.Google Scholar

References for Procedure 8.4

  1. Byrne, B. M. (2016). Structural equation modelling with AMOS: Basic concepts, applications, and programming (3rd ed.). New York: Routledge.CrossRefGoogle Scholar
  2. Canty, A. J., & Davison, A. C. (2005). Bootstrap inference. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 1, pp. 169–176). Chichester: Wiley.Google Scholar
  3. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using R (pp. 226–227, 298–301). London: Sage Publications.Google Scholar
  5. Mooney, C. Z., & Duval, R. D. (1993). Bootstrapping: A nonparametric approach to statistical inference. Newbury Park: Sage Publications.CrossRefGoogle Scholar
  6. Rodgers, J. L. (2005). Jackknife. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 2, pp. 1005–1007). Chichester: Wiley.Google Scholar

Useful Additional Reading for Procedure 8.4

  1. Dracup, C. (2005). Confidence intervals. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 1, pp. 366–375). Chichester: Wiley.Google Scholar
  2. Field, A. (2018). Discovering statistics using SPSS for Windows (5th ed., pp. 265–268). Los Angeles: Sage Publications.Google Scholar
  3. Mooney, C. (2004). Bootstrapping. In M. S. Lewisbeck, A. Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of social science research methods (Vol. 1, pp. 75–78). Thousand Oaks: Sage Publications.Google Scholar
  4. Westfall, P. H., & Young, S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment. New York: Wiley.zbMATHGoogle Scholar

References for Procedure 8.5

  1. Allen, P. G., & Fildes, R. (2001). Econometric forecasting. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for practitioners and researchers (pp. 303–362). Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21(1), 79–109.MathSciNetCrossRefGoogle Scholar
  3. Bowerman, BL O’Connell, RT & Koehler, AB 2005, Forecasting, time series, and regression: An applied approach, 4, Brooks/Cole, Belmont, Parts III and IV.Google Scholar
  4. Coghlan, A. (2018). A little book of R for time series (Release 0.2). https://buildmedia.readthedocs.org/media/pdf/a-little-book-of-r-for-time-series/latest/a-little-book-of-r-for-time-series.pdf. Accessed 18 Sept 2019.
  5. Cromwell, J. B., Labys, W. C., & Terraza, M. (1994a). Univariate tests for time series models. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  6. Cromwell, J. B., Hannan, M. J., Labys, W. C., & Terraza, M. (1994b). Multivariate tests for time series models. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  7. Crosbie, J. (1993). Interrupted time-series analysis with brief single-subject data. Journal of Consulting and Clinical Psychology, 61(6), 966–974.CrossRefGoogle Scholar
  8. Glass, G. V., Willson, V. L., & Gottman, J. M. (2008). Design and analysis of time-series experiments. Charlotte: Information Age Publishing.Google Scholar
  9. McCleary, R., & Hay, R. A., Jr. (1980). Applied time series analysis for the social sciences. Beverly Hills: Sage Publications.Google Scholar
  10. McDowell, D., McCleary, R., Meidinger, E. E., & Hay, R. A., Jr. (1980). Interrupted time series analysis. Beverly Hills: Sage Publications.CrossRefGoogle Scholar
  11. Ostrom, C. W., Jr. (1978). Time series analysis: Regression techniques. Beverly Hills: Sage Publications.zbMATHGoogle Scholar
  12. Sayrs, L. W. (1989). Pooled time series analysis. Newbury Park: Sage Publications.CrossRefGoogle Scholar
  13. Sharpley, C. F. (1997). Single case research: Measuring change. In J. P. Keeves (Ed.), Educational research, methodology, and measurement: An international handbook (2nd ed., pp. 451–456). Oxford: Pergamon Press.Google Scholar
  14. StataCorp, L. P. (2011). Stata time-series reference manual: Release 12. College Station: Stata Press.Google Scholar
  15. Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). New York: Pearson Education, ch. 17.Google Scholar
  16. Wagner, A. K., Soumerai, S. B., Zhang, F., & Ross-Degnan, D. (2002). Segmented regression analysis of interrupted time series studies in medication use research. Journal of Clinical Pharmacy and Therapeutics, 27, 299–309.CrossRefGoogle Scholar

Useful Additional Reading for Procedure 8.5

  1. Gottman, J. M. (1981). Time series analysis: A comprehensive introduction for social scientists. London: Cambridge University Press.zbMATHGoogle Scholar
  2. Hamilton, L. C. (2013). Statistics with Stata: Version 12. Boston: Brooks/Cole, ch. 12.Google Scholar
  3. Huitema, B. (2004). Analysis of interrupted time-series experiments using ITSE: A critique. Understanding Statistics, 3(1), 27–46.CrossRefGoogle Scholar

References for Procedure 8.6

  1. Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: The Guilford Press.Google Scholar
  2. Bryant, F. B., & Yarnold, P. R. (1995). Principal components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99–136). Washington, DC: American Psychological Association.Google Scholar
  3. Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). New York: Routledge.CrossRefGoogle Scholar
  4. Geiser, C. (2013). Data analysis with MPlus. New York: The Guilford Press, section 3.4.Google Scholar
  5. Kline, R. B. (2015). Principles and practice of structural equation modelling (4th ed.). New York: The Guilford Press, ch. 9, 12, 13.Google Scholar
  6. Schumacker, R. E., & Lomax, R. G. (2016). A beginner’s guide to structural equation modeling (4th ed.). New York: Routledge, ch. 6.zbMATHGoogle Scholar

Useful Additional Reading for Procedure 8.6

  1. Hair, J. F., Black, B., Babin, B., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River: Pearson Education, ch. 12.Google Scholar
  2. Long, J. S. (1983). Confirmatory factor analysis. Beverley Hills: Sage Publications.CrossRefGoogle Scholar
  3. Meyers, L. S., Gamst, G. C., & Guarino, A. (2017). Applied multivariate research: Design and interpretation (3rd ed.). Thousand Oaks: Sage Publications, ch. 11A, 11B.Google Scholar

References for Procedure 8.7

  1. Byrne, B. M. (2016). Structural equation modeling with AMOS: Basic concepts, applications, and programming (3rd ed.). New York: Routledge.CrossRefGoogle Scholar
  2. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah: Lawrence Erlbaum Associates, ch. 12.Google Scholar
  3. Geiser, C. (2013). Data analysis with MPlus. New York: The Guilford Press.Google Scholar
  4. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modelling (SEM). Los Angeles: Sage Publications.zbMATHGoogle Scholar
  5. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40, 414–433.CrossRefGoogle Scholar
  6. Klem, L. (2000). Structural equation modeling. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding more multivariate statistics (pp. 227–260). Washington, DC: American Psychological Association (APA).Google Scholar
  7. Kline, R. B. (2015). Principles and practice of structural equation modelling (4th ed.). New York: The Guilford Press, ch. 6, 7, 8, 10.Google Scholar
  8. Ringle, C. M., Wende, S., & Will, S. (2005). SmartPLS 2.0 (M3) Beta. Hamburg: University of Hamburg.Google Scholar
  9. Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), iii–xiv and S3–S8.Google Scholar
  10. Rosseel, Y. (2012). lavaan: An R package for structural equation modelling. Journal of Statistical Software, 48(2), 1–36.CrossRefGoogle Scholar
  11. Schumacker, R. E., & Lomax, R. G. (2016). A beginner’s guide to structural equation modeling (4th ed.). New York: Routledge.zbMATHGoogle Scholar

Useful Additional Reading for Procedure 8.7

  1. Hair, J. F., Black, B., Babin, B., & Anderson, R. E. (2010). Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River: Pearson Education, ch. 11, 12.Google Scholar
  2. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152.CrossRefGoogle Scholar
  3. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1–12.CrossRefGoogle Scholar
  4. Hoyle, R. H. (Ed.). (2012). Handbook of structural equation modeling. New York: Guilford Press.Google Scholar
  5. Long, J. S. (1983). Covariance structure analysis. Newbury Park: Sage Publications.CrossRefGoogle Scholar
  6. Meyers, L. S., Gamst, G. C., & Guarino, A. (2017). Applied multivariate research: Design and interpretation (3rd ed.). Thousand Oaks: Sage Publications, ch. 12A to 14B.Google Scholar
  7. Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and prediction (3rd ed.). South Melbourne: Wadsworth Thomson Learning, ch. 18 and 19.zbMATHGoogle Scholar
  8. Sellin, N., & Keeves, J. P. (1997). Path analysis with latent variables. In J. P. Keeves (Ed.), Educational research, methodology, and measurement: An international handbook (2nd ed., pp. 632–640). Oxford: Pergamon Press.Google Scholar
  9. Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics (7th ed.). New York: Pearson Education, ch. 14.Google Scholar
  10. Thompson, B. (2000). Ten commandments of structural equation modeling. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding more multivariate statistics (pp. 261–284). Washington, DC: American Psychological Association (APA).Google Scholar
  11. Tuijnman, A. C., & Keeves, J. P. (1997). Path analysis and linear structural relations analysis. In J. P. Keeves (Ed.), Educational research, methodology, and measurement: An international handbook (2nd ed., pp. 621–632). Oxford: Pergamon Press.Google Scholar
  12. Ullman, J. B., & Bentler, P. M. (2004). Structural equation modeling. In M. Hardy & A. Bryman (Eds.), Handbook of data analysis (pp. 431–458). London: Sage Publications.CrossRefGoogle Scholar

References for Procedure 8.8

  1. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: Wiley.zbMATHCrossRefGoogle Scholar
  2. Chen, D.-G., & Peace, K. E. (2013). Applied meta-analysis using R. London: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  3. Cooksey, R. W., & McDonald, G. (2019). Surviving and thriving in postgraduate research (2nd ed.). Singapore: Springer.CrossRefGoogle Scholar
  4. Cooper, H., Hedges, L. V., & Valentine, J. V. (2009). The handbook of research synthesis and meta-analysis (2nd ed.). New York: Russell Sage Foundation.Google Scholar
  5. Everitt, B. S., & Hothorn, T. (2006). A handbook of statistical analyses using R. Boca Raton: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  6. Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.CrossRefGoogle Scholar
  7. Hedges, L., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando: Academic, ch. 1 provides a good foundation.zbMATHGoogle Scholar
  8. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48.CrossRefGoogle Scholar
  9. Wolf, F. (1986). Meta-analysis. Beverly Hills: Sage Publications.CrossRefGoogle Scholar

Useful Additional Reading for Procedure 8.8

  1. Durlak, J. A. (1995). Understanding meta-analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 319–352). Washington, DC: American Psychological Association.Google Scholar
  2. Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills: Sage Publications.Google Scholar
  3. Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings (2nd ed.). Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  4. Konstantopoulos, S., & Hedges, L. (2004). Meta-analysis. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 281–300). Thousand Oaks: Sage Publications.Google Scholar
  5. Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks: Sage Publications.Google Scholar
  6. Rosenthal, R. (1984). Meta-analytic procedures for social research. Beverly Hills: Sage Publications.Google Scholar
  7. Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis (2nd ed.). New York: McGraw-Hill, ch. 22.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ray W. Cooksey
    • 1
  1. 1.UNE Business SchoolUniversity of New EnglandArmidaleAustralia

Personalised recommendations