Advertisement

Implementation of the Bidirectional Reflectance Function for Modeling the Spectra Derived from Hyperspectral Images

  • R. Mohammed Zeeshan
  • B. Sayyad Shafiyoddin
Conference paper
  • 17 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1118)

Abstract

Hapke’s bidirectional reflectance function based on the theory of radiative transfer has been implemented for modeling the spectra derived from Chandrayaan-1 hyperspectral images. The parameter study was done to study the behavior and influence of each parameter like grain size, porosity, iron fraction which represents the degree of space weathering and phase function was critically assessed. The model was then tested against the four standard lunar mixtures which constitutes of major lunar minerals from RELAB, and it was observed that the artificially created model spectra were successful in reproducing the overall trend in the resultant spectra. Finally, the nine representative spectra derived from hyperspectral image of the Chandrayaan-1 HySI sensor covering part of Mare Vaporum were modeled. The mass fraction of the surface minerals along with the associated Hapke parameter was predicted.

Keywords

Bidirectional reflectance Hyperspectral image Porosity 

Notes

Acknowledgements

“The author is thankful for the financial assistance received from DoS (Department of Space, ISRO/SSPO/Ch-1/2016-17, August 17, 2016). This work is a part of the ISRO project under Chandrayaan-1 AO (Announcement of Opportunity) program. The research is based (partially or to a significant extent) on the results obtained from the Chandrayaan-1, first lunar mission of the ISRO, archived at the Indian Space Science Data Center (ISSDC).”

References

  1. 1.
    Pieters, C.M., Fischer, E.M., Rode, O., Basu, A.: Optical effects of space weathering—the role of the finest fraction. J. Geophys. Res.—Planets 98, 20817–20824 (1993)Google Scholar
  2. 2.
    Chapman, C.R.: Space weathering of asteroid surfaces. Annu. Res. Earth Planet. Sci. 32, 539–567 (2004)CrossRefGoogle Scholar
  3. 3.
    Keller, L.P., Mckay, D.S.: Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993)CrossRefGoogle Scholar
  4. 4.
    Keller, L.P., McKay, D.S.: the nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Ac. 61, 2331–2341 (1997)CrossRefGoogle Scholar
  5. 5.
    Taylor, L.A., Pieters, C.M., Keller, L.P., Morris, R.V., McKay, D.S.: Lunar Mare Soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. Planets 106, 27985–27999 (2001)CrossRefGoogle Scholar
  6. 6.
    Taylor, L.A., Pieters, C.M., Patchen, A., Taylor, D.S., Morris, R.V., Keller, L.P., Mckay, D.S.: Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies, J. Geophys. Res. Planets 115, E02002 (2010)Google Scholar
  7. 7.
    McCord, T.B., Johnson, T.V.: Lunar spectral reflectivity (0.30–2.50 microns) and implications for remote mineralogical analysis. Science 169, 855–858 (1970)CrossRefGoogle Scholar
  8. 8.
    McCord, T.B., Adam, J.B.: Progress in remote optical analysis of lunar surface composition. Moon 7, 453–474 (1973)CrossRefGoogle Scholar
  9. 9.
    Pieters, C.M., Taylor, L.A., Noble, S.K., Keller, L.P., Hapke, B., Morris, R.V., Allen, C.C., McKay, D.S., Wentworth, S.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101–1107 (2000)CrossRefGoogle Scholar
  10. 10.
    Noble, S.K., Pieters, C.M., Keller, L.P.: An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007)CrossRefGoogle Scholar
  11. 11.
    Hapke, B.: Effects of a simulated solar wind on the photometric properties of rocks and powders. Ann. N. Y. Acad. Sci. 123, 711–721 (1965)CrossRefGoogle Scholar
  12. 12.
    Hapke, B., Cohen, A., Cassidy, W., Wells, E.: Solar radiation effects on the optical properties of Apollo 11 lunar samples. In: Proceedings of the Apollo 11 Lunar Science Conference, pp. 2199–2212 (1970)Google Scholar
  13. 13.
    Nobel, S.K., Pieters, C.M.: Space weathering on mercury: implications for remote sensing. Sol. Syst. Res. 37, 31–35 (2003)CrossRefGoogle Scholar
  14. 14.
    Brunetto, R., Vernazza, P., Marchi, S., Birlan, M., Fulchignoni, M., Orofino, V., Strazzulla, G.: modeling asteroid surfaces from observations and irradiation experiments: the case of 832 Karin. Icarus 184, 327–337 (2006)CrossRefGoogle Scholar
  15. 15.
    Shkuratov, Y.G., Starukhina, L., Huffmann, H., Arnold, G.: A model of spectral albedo of particulate surfaces: Implications for optical properties of the moon. Icarus 137(2), 235–246 (1999).  https://doi.org/10.1006/icar.1998.6035 CrossRefGoogle Scholar
  16. 16.
    Hapke, B.: Bidirectional reflectance spectroscopy. I—Theory. J. Geophys. Res. 86, 3039–3054 (1981)CrossRefGoogle Scholar
  17. 17.
    Sunshine, J.M., Pieters, C.M., Prait, S.F.: Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res. 95(B5), 6955–6966 (1990).  https://doi.org/10.1029/JB095iB05p06955CrossRefGoogle Scholar
  18. 18.
    Poulet, F., Erard, E.: Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures. J. Geophys. Res. 109, E02009 (2004).  https://doi.org/10.1029/2003JE002179CrossRefGoogle Scholar
  19. 19.
    Hapke, B., Wells, E.: Bidirectional reflectance spectroscopy. II experiments and observations. J. Geophys. Res. 86, 3055–3060 (1981)CrossRefGoogle Scholar
  20. 20.
    Hapke, B.: Bidirectional reflectance spectroscopy. III-Correct. Macrosc., Icarus 59, 41–59 (1984)Google Scholar
  21. 21.
    Hapke, B.: Bidirectional reflectance spectroscopy. IV-the extinction coe_cientand the opposition e_ect. Icarus 67, 264–280 (1986)CrossRefGoogle Scholar
  22. 22.
    Hapke, B.: Theory of Reflectance and Emittance Spectroscopy, Topics in Remote Sensing, Cambridge University Press, Cambridge, UK (1993)Google Scholar
  23. 23.
    Hapke, B.: Space weathering from mercury to the asteroid belt. J. Geophys. Res. 106, 10039–10074 (2001)Google Scholar
  24. 24.
    Clark, R.N., Roush, T.L.: Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984).  https://doi.org/10.1029/JB089iB07p06329CrossRefGoogle Scholar
  25. 25.
    Mustard, J.F., Pieters, C.M.: Quantitative abundance estimates from bidirectional reflectancemeasurements. Proc. Lunar Planet. Sci. Conf. 17th, Part 2 J. Geophys. Res. 92, E617–E626 (1987).  https://doi.org/10.1029/JB092iB04p0E617CrossRefGoogle Scholar
  26. 26.
    Lucey, P.G.: mineral maps of the moon. Geophys. Res. Lett. 31, L08701 (2004).  https://doi.org/10.1029/2003GL019406CrossRefGoogle Scholar
  27. 27.
    Lawrence, S.J., Lucey, P.G.: Radiative transfer mixing models of meteoritic assemblages. J. Geophys. Res. 112, E07005 (2007).  https://doi.org/10.1029/2006JE002765CrossRefGoogle Scholar
  28. 28.
    Cahill, J.T.S., Lucey, P.G., Wieczorek, M.A.: Compositional variations of the lunar crust: results from radiative transfer modeling of central peak spectra. J. Geophys. Res. 114, E09001 (2009).  https://doi.org/10.1029/2008JE003282CrossRefGoogle Scholar
  29. 29.
    Cahill, J.T.S., Lucey, P.G., Stockstill-Cahill, K.R., Hawke, B.R.: Radiative transfer modeling of near-infrared reflectance of lunar highland and mare soils. J. Geophys. Res. 115, E12013 (2010).  https://doi.org/10.1029/2009JE003500CrossRefGoogle Scholar
  30. 30.
    Hiroi, T., Pieters, C. M.: Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. J. Geophys. Res. 99, 10867–10880 (1994)Google Scholar
  31. 31.
    Kitamura, R., Pilon, L., Jonasz, M.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46, 8118 (2007)CrossRefGoogle Scholar
  32. 32.
    Johnson, P.B., Cristy, R.W.: Optical constants of metals: Ti, V, Cr, Mn, Fe, Co,Ni, and Pd, prb, 9, 5056–5070 (1974)Google Scholar
  33. 33.
    Mustard, J.F., Pieters, C.M.: Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. 94, 13619–13634 (1989)Google Scholar
  34. 34.
    Hapke, B.: Bidirectional reflectance Spectroscopy5. Coherent Backscatter Oppos. Eff. Anisotropic Scatt., Icarus 157, 523–534 (2002)Google Scholar
  35. 35.
    Hiesinger, H., Head III, J.W., Wolf, U., Jaumann, R., Neukum, G.: Ages and stratigraphy of mare basalts in oceanus procellarum, mare nubium, mare cognitum, and mare insularum. J. Geophys. Res.: Planets 108(E7) (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. Mohammed Zeeshan
    • 1
  • B. Sayyad Shafiyoddin
    • 1
  1. 1.Department of Computer ScienceMilliya Arts, Science & Management Science CollegeBeedIndia

Personalised recommendations