Advertisement

A GRU-Based Neural Machine Translation Followed by Proper Noun Transliteration

  • Hitesh NarangEmail author
  • Prachi Gharpure
Conference paper
  • 17 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1118)

Abstract

Neural machine translation has drastically improved the accuracy of machine translation in recent years. The issue of translating out-of-vocabulary proper nouns (OOV-NNP) is still a hindrance to the betterment of machine translation. In this paper, we introduce neural machine translation followed by Proper Noun Transliteration (NMT-NNPT) to address this issue. We explore the idea of transliteration as a post-processing task on the result of neural machine translation using English–Hindi language pair. This approach further improves the translation accuracy and can be used with any language pair.

Keywords

Neural machine translation Transliteration Recurrent neural network 

References

  1. 1.
  2. 2.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. ICLR 1–15 (2015)Google Scholar
  3. 3.
    Saini, S., Sahula, V.: Neural machine translation for English to Hindi. In: 2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP), Kota Kinabalu, pp. 1–6 (2018)Google Scholar
  4. 4.
    Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. CoRR (2016). abs/1609.08144Google Scholar
  5. 5.
    Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR (2014). arXIV:abs/1406.1078
  6. 6.
    Sutskever, L., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Advan. Neural Inf. Process. Syst. 27, 3104–3112 (2014)Google Scholar
  7. 7.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  8. 8.
    Cho, K., Van Merrieenboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR (2014). arXIV:abs/1406.1078
  9. 9.
    Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR (2014). arXIV:abs/1412.3555
  10. 10.
    Knight, K., Graehl, J.: Machine transliteration. Comput. Linguist. 24(4), 599–612 (1998)Google Scholar
  11. 11.
    Ekbal, A., Naskar, S.K., Bandyopadhyay, S.: Named entity transliteration. Int. J. Comput. Process. Lang. 20(04), 289–310 (2007)CrossRefGoogle Scholar
  12. 12.
    Tennage, P., Herath, A., Thilakarathne, M., Sandaruwan, P., Ranathunga, S.: Transliteration and byte pair encoding to improve Tamil to Sinhala neural machine translation. In: Moratuwa Engineering Research Conference (MERCon), pp. 390–395 (2018)Google Scholar
  13. 13.
    Loper, E., Bird, S.: Natural language toolkitGoogle Scholar
  14. 14.
  15. 15.
    Kunchukuttan, A., Mehta, P., Bhattacharyya, P.: The IIT Bombay English-Hindi parallel corpus. CoRR (2017). arXIV:abs/1710.02855
  16. 16.
  17. 17.
    Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)Google Scholar
  18. 18.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Bharatiya Vidya Bhavans Sardar Patel Institute of Technology Munshi NagarMumbaiIndia

Personalised recommendations