Distinguishing Features and Axioms of Quantum Mechanics

  • Rajendra K. BeraEmail author
Part of the Undergraduate Lecture Notes in Physics book series (ULNP)


This chapter describes certain fundamental differences between classical and quantum mechanics, their different postulates, the role of the observer, what is meant by local and non-local interactions, causality and determinism, and the role of force, energy, and momentum. A short introduction to the purely quantum mechanical aspect of superposition, measurement, and entanglement is provided to mentally prepare the reader for the chapters ahead.


  1. 1.
    J. Al-Kahlili, in Quantum (Weidenfeld & Nicolson, London, 2003)Google Scholar
  2. 2.
    A. Aspect, in Testing Bell’s Inequalities (1991), pp. 415–425. (For a video, see The text presented is very close to the one that Aspect prepared for the special issue of Europhysics News; A. Aspect, Testing Bell’s inequalities. Europhys. News 22, 73–75 (1991), on John Bell and Quantum Mechanics (issue of April 1991)
  3. 3.
    A. Aspect, P. Grangier, G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982).
  4. 4.
    D. Bohm, in Quantum Theory (Dover Publications, New York, 1989) (Reprint of the original published by Prentice-Hall, New Jersey in 1951)Google Scholar
  5. 5.
    D. Bohm, A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–193 (1952).
  6. 6.
    D. Bohm, B.J. Hiley, in The Undivided Universe (Routledge, London, 1993)Google Scholar
  7. 7.
    N. Bohr, Das Quantenpostulat und die neuere Entwicklung der Atomistik. Naturwissenschaften 16(15), 245–257 (1928)Google Scholar
  8. 8.
    N. Bohr, in Atomic Theory and Human Knowledge (Wiley, New York, 1958)Google Scholar
  9. 9.
    M. Born, Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37(12), 863–867 (1926).
  10. 10.
    M. Born, Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 38 (11–12), 803–827 (1926) [English translation in ed. G. Ludwig, Wave Mechanics (Pergamon Press, Oxford, 1968)]Google Scholar
  11. 11.
    M. Born, in The Statistical Interpretation of Quantum Mechanics (1954). Nobel Lecture, 11 Dec 1954.
  12. 12.
    M. Born, in Atomic Physics (Blackie, Glasgow, 1969)Google Scholar
  13. 13.
    M. Born, W. Heisenberg, P. Jordan, Zur Quantenmechanik II, Zeitschrift für Physik 35, 557–615 (1926) (received 16 Nov 1925) [English translation in ed. B.L. van der Waerden, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: On Quantum Mechanics II).]Google Scholar
  14. 14.
    M. Born, P. Jordan, Zur Quantenmechanik, Zeitschrift für Physik 34, 858–888 (1925) (received 27 Sept 1925) [English translation in ed. B.L. van der Waerden, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: On Quantum Mechanics).]Google Scholar
  15. 15.
    P. Busch, P. Lahti, R.F. Werner, Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013). Preprint at
  16. 16.
    P. Byrne, in The Many Worlds of Hugh Everett (Scientific American, Dec 2007).
  17. 17.
    R. Cowan, Proof mooted for quantum uncertainty. Nature 498, 419–420 (2013).!/menu/main/topColumns/topLeftColumn/pdf/498419a.pdf
  18. 18.
    J. Cresser, Physics 201, Lecture Notes (Department of Physics, Macquarie University, Sydney, 2005).
  19. 19.
    C. Davisson, L.H. Germer, Diffraction of electrons by a crystal of nickel. Phys. Rev. 30(6), 705–740 (1927)CrossRefGoogle Scholar
  20. 20.
    C.J. Davisson, The diffraction of electrons by a crystal of Nickel. Bell Syst. Tech. J. January 1928.
  21. 21.
    D. Deutsch, Quantum theory, the Church-Turning principle and the universal quantum computer, in Proceedings of the Royal Society of London; Series A, Mathematical and Physical Sciences, vol. 400 (1818), July 1985, pp. 97–117.
  22. 22.
    D. Deutsch, in The Fabric of Reality (Penguin Books, New York, 1997)Google Scholar
  23. 23.
    D. Deutsch, in Creative Blocks (Aeon, 03 Oct 2012).
  24. 24.
    P.A.M. Dirac, The fundamental equations of quantum mechanics. Proc. R. Soc. A 109, 642–653 (1925).
  25. 25.
    P.A.M. Dirac, in The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, 1958)Google Scholar
  26. 26.
    F.J. Dyson, Why is Maxwell’s theory so hard to understand? in The Second European Conference on Antennas and Propagation, 2007 (EuCAP 2007, Edinburgh).
  27. 27.
    A. Einstein, On a heuristic view concerning the production and transformation of light. Annalen der Physik 17, 132–148 (1905) (English translation from German).
  28. 28.
    A. Einstein, L. Infeld, The Evolution of Physics (Cambridge University Press, Cambridge, 1938).
  29. 29.
    H. Everett, On the Foundations of Quantum Mechanics. Ph.D. thesis (Princeton University, Department of Physics, 1957)Google Scholar
  30. 30.
    H. Everett, “Relative State” formulation of quantum mechanics. Rev. Modern Phys. 29(3), 454–462 (1957).
  31. 31.
    H. Everett, Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11(3), 399–417 (1963).
  32. 32.
    D. Falk, New support for alternative quantum view. Quanta Magazine, 16 May 2016. (Reprinted from Dan Falk. New Evidence Could Overthrow the Standard View of Quantum Mechanics. Science, 16 May 2016,
  33. 33.
    J. Faye, Copenhagen interpretation of quantum mechanics. Stanford Encycl. Philos. (2008).
  34. 34.
    R. Feynman, in The Character of Physical Law. Modern Library Edition, 1994 (Originally published by BBC in 1965, and in paperback by MIT Press, 1967)Google Scholar
  35. 35.
    J. Handsteiner et al., Cosmic Bell test: measurement settings from Milky Way stars. Phys. Rev. Lett. 118, 060401, 07 Feb 2017.
  36. 36.
    S. Hawking (n.d.), in Does God play Dice?
  37. 37.
    W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879–893 (1925) (received July 29, 1925) [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics (Dover Publications, 1968) ISBN 0-486-61881-1 (English title: Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations).] (The original paper)Google Scholar
  38. 38.
    W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik Zeitschr (The actual content of quantum theoretical kinematics and mechanics), Phys. 43(3–4), 172–198 (1927) (Translation available at J.A. Wheeler, W.H. Zurek, Quantum Theory and Measurement (Princeton University Press, N.J., 1983), pp. 62–84)Google Scholar
  39. 39.
    W. Heisenberg, in The Physical Principles of the Quantum Theory (University of Chicago Press, 1930)Google Scholar
  40. 40.
    W. Heisenberg, in Physics and Philosophy: The Revolution in Modern Science (George Allen and Unwin, 1958)
  41. 41.
    W. Heisenberg, Across the Frontiers (Harper & Row, New York, 1974)Google Scholar
  42. 42.
    J. Hilgevoord, J. Uffink, The uncertainty principle. Stanford Encyclopedia of Philosophy. 12 July 2016.
  43. 43.
    I. James, in Remarkable Physicists: From Galileo to Yukawa (Cambridge University Press, 2004)Google Scholar
  44. 44.
    I. Jammer, in The Philosophy of Quantum Mechanics (Wiley, New York, 1974)Google Scholar
  45. 45.
    H. Lamb, in Hydrodynamics (Cambridge University Press, 1932)Google Scholar
  46. 46.
    D. Mahler et al., Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2(2), e1501466 (2016).
  47. 47.
    J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865). (This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society.)
  48. 48.
    N.D. Mermin, Could Feynman have said this? Phys. Today 57(5).
  49. 49.
    L. Nanni, A new derivation of the time-dependent Schrödinger equation from wave and matrix mechanics. Adv. Phys. Theor. Appl. 43 (2015). ISSN 2224-719X (Paper) ISSN 2225-0638 (Online).
  50. 50.
    M.A. Nielsen, I.L. Chuang, in Quantum Computation and Quantum Information (Cambridge University Press, 2000) [Errata at]
  51. 51.
    Nobelprize (n.d.). The uncertainty principle. Quant. World, Quant. Mech. 3, 9.
  52. 52.
    M. Planck, Ueber irreversible Strahlungsvorgänge. Annalen der Physik 306(1), 69–122 (1900).|
  53. 53.
    H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica 13, 1–270 (1890).
  54. 54.
    K. Popper, in Conjectures and Refutations: The Growth of Scientific Knowledge (Routledge, 1963)Google Scholar
  55. 55.
    P. Renkel, in Building a Bridge between Classical and Quantum Mechanics. arXiv:1701.04698v2 [physics.gen-ph], 06 Nov 2017.
  56. 56.
    E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. Second Series, 28(6) (1926).
  57. 57.
    E. Schrödinger, in Collected Papers on Wave Mechanics. Blackie and Son Ltd. (Translated from the Second German Edition, Abhandlungen zur Wellenmechanik. Johann Ambrosius Barth, 1928, by J. F. Shearer) (They include practically all that Schrödinger has written on wave mechanics.) (Publisher’s note: “Throughout the book Eigenfunktion has been translated as proper function, and Eigenwert, proper value. The phrase eine stückweise stetige Funktion has been translated a sectionally continuous function.”)
  58. 58.
    E. Schrödinger, Quantisation as a problem of proper values (Part I). Annalen der Physik 79(4) (1926). Available in Schrödinger (Collected papers), pp. 1–12Google Scholar
  59. 59.
    E. Schrödinger, Quantisation as a problem of proper values (Part II). Annalen der Physik 79(4) (1926). Available in Schrödinger (Collected papers), pp. 13–40Google Scholar
  60. 60.
    E. Schrödinger, Quantisation as a problem of proper values (Part III). Annalen der Physik 80(4) (1926). Available in Schrödinger (Collected papers), pp. 62–101Google Scholar
  61. 61.
    E. Schrödinger, Quantisation as a problem of proper values (Part IV). Annalen der Physik 81(4) (1926). Available in Schrödinger Available in Schrödinger (Collected papers), pp. 102–123Google Scholar
  62. 62.
    C. Seife, Do deeper principles underlie quantum uncertainty and nonlocality? Science 309(5731), 98, 01 July 2005.
  63. 63.
    H. Stapp, S-matrix interpretation of quantum theory. Phys. Rev. D3, 1303 (1971)Google Scholar
  64. 64.
    L. Susskind, A. Friedman, in Quantum Mechanics—The Theoretical Minimum (Penguin Books, 2015)Google Scholar
  65. 65.
    J.J. Thomson, Cathode Rays, The Electrician, vol. 39, No. 104, also published in Proceedings of the Royal Institution, 30 April 1897, 1–14.Google Scholar
  66. 66.
    G.P. Thomson, Experiments on the diffraction of cathode rays, in Proceedings of the Royal Society of London, Series A, vol. 117, No. 778 (Feb. 1, 1928), pp. 600–609.
  67. 67.
    G.P. Thomson, Some recent experiments on cathode rays, in The 11th Mackenzie Davidson Memorial Lecture; read, 4 Dec 1930,
  68. 68.
    J.A. Wheeler, ““No Fugitive and Cloistered Virtue”—A tribute to Niels Bohr”. Physics Today 16(1), 30 (1963).
  69. 69.
    T. Young, The Bakerian lecture: on the theory of light and colours, in Philosophical Transactions of the Royal Society of London, vol. 92, pp. 12–48 (38 p), Nov 1802.
  70. 70.
    T. Young, Experimental demonstration of the general law of the interference of light, in Philosophical Transactions of the Royal Society of London, vol. 94, 31 Dec 1804.
  71. 71.
    G. Zukav, in The Dancing Wu Li Masters: An Overview of the New Physics (Rider, 1979)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Acadinnet Education Services IndiaBangaloreIndia

Personalised recommendations