Advertisement

The Crown Jewels of Quantum Algorithms

  • Rajendra K. BeraEmail author
Chapter
  • 95 Downloads
Part of the Undergraduate Lecture Notes in Physics book series (ULNP)

Abstract

This chapter provides detailed descriptions of the most intellectually valued algorithms in quantum computing, including Peter Shor’s factoring algorithm and Lov Grover search algorithm, among others. An attempt is made to explain the subtle aspects of the algorithms and why such algorithms are valued.

References

  1. 1.
    ANU. Australian National University, Physicists Solve Quantum Tunneling Mystery. Phys.org, 27 May 2015 (2015). https://phys.org/news/2015-05-physicists-quantum-tunneling-mystery.html
  2. 2.
    ASRC. Advanced Science Research Center, GC/CUNY, A new theory for trapping light particles aims to advance development of quantum computers. Sci. Daily, 24 June 2019 (2019). https://www.sciencedaily.com/releases/2019/06/190624173830.htm
  3. 3.
    A. Barenco, Quantum physics and computers. Contemp. Phys. 37(5), 375–389 (1996). Preprint at http://arxiv.org/abs/quant-ph/9612014
  4. 4.
    C.H. Bennett, E. Bernstein, G. Brassard, U. Vazirani, Strengths and weaknesses of quantum computing. Preprint quant-ph/9701001 (1997). https://arxiv.org/pdf/quant-ph/9701001.pdf
  5. 5.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. Wootters, teleporting an unknown quantum state via dual classical and EPR channels. Phys. Rev. Lett. 70, 1895–1899 (1993). http://www.research.ibm.com/quantuminfo/teleportation/teleportation.html
  6. 6.
    C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69(20), 2881–2884 (1992)Google Scholar
  7. 7.
    E. Bernstein, U.V. Vazirani, Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997). A preliminary version of this paper appeared in the Proceedings of the 25th ACM Symposium on the Theory of Computing, 1993Google Scholar
  8. 8.
    Boyer, M., Brassard, G., Hoyer, P., Tapp, A. Tight bounds on quantum search, in Proceedings of the Workshop on Physics of Computation: PhysComp’96, Los Alamitos, CA, pp. 36–43 (1996). http://xxx.lanl.gov/abs/quant-ph/9805082
  9. 9.
    B.B. Brandt, C. Yannouleas, U. Landman, Interatomic interaction effects on second-order momentum correlations and Hong-Ou-Mandel interference of double-well-trapped ultracold fermionic atoms. arXiv:1801.02295v3 [cond-mat.quant-gas], 16 March 2018. https://arxiv.org/pdf/1801.02295.pdf. Also at Phys. Rev. A 97, 053601. Published 4 May 2018
  10. 10.
    S.L. Braunstein, Quantum Computation (A tutorial paper) (1995). http://www-users.cs.york.ac.uk/~schmuel/comp/comp_best.pdf
  11. 11.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)Google Scholar
  12. 12.
    R. Cleve, A. Ekert, C. Macchiavllo, M. Mosca, Quantum algorithms revisited. Proc. R. Soc. Lond. A, 454, pp. 339–354 (1998). See preprint at: arXiv:quant-ph/9708016 v1 8 Aug 1997, http://arxiv.org/PS_cache/quant-ph/pdf/9708/9708016v1.pdf
  13. 13.
    D. Coppersmith, An Approximate Fourier Transform Useful in Quantum Factoring, IBM Research Report RC 19642 (1994)Google Scholar
  14. 14.
    D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond.; Ser. A, Math. Phys. Sci. 400(1818), 97–117 (1985). http://www.qubit.org/oldsite/resource/deutsch85.pdf
  15. 15.
    A. Ekert, R. Jozsa, Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68(3), 733–753 (1996). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.1518&rep=rep1&type=pdf
  16. 16.
    C. Figgatt et al., Complete 3-Qubit Grover search on a programmable quantum computer. Nat. Commun. 8 (2017).  https://doi.org/10.1038/s41467-017-01904-7. Article number: 1918
  17. 17.
    C.F. Gauss, Disquisitiones Arithmeticae, (Arithmetical Investigations; original text in Latin) Translated by A. A. Clarke, Yale University Press, New Haven, Connecticut, 1966; Reprint edition by Springer-Verlag, New York, 1986Google Scholar
  18. 18.
    M.R. Geller, Z. Zhou, Factoring 51 and 85 with 8 qubits. Sci. Rep. 3 (2013). https://www.nature.com/articles/srep03023;  https://doi.org/10.1038/srep03023. Article number: 3023
  19. 19.
    N.A. Gershenfeld, I.L. Chuang, Quantum computing with molecules. Sci. Am. 278(6), 66–71 (1998). http://cba.mit.edu/docs/papers/98.06.sciqc.pdf
  20. 20.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, pp. 212–219 (1996). Available at http://xxx.lanl.gov/abs/quant-ph/9605043
  21. 21.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328. 14 July 1997. Available at https://arxiv.org/pdf/quant-ph/9706033.pdf
  22. 22.
    L.K. Grover, Quantum computing. The Sci. (July/August), 24–30 (1999). http://cryptome.org/qc-grover.htm
  23. 23.
    L.K. Grover, From Schrödinger Equation to the Quantum Search Algorithm, quant-ph/0109116, Sept 22 2002. http://arxiv.org/PS_cache/quant-ph/pdf/0109/0109116.pdf
  24. 24.
    IBM, IBM Announces Advances to IBM Quantum Systems & Ecosystem. IBM News Room, 10 Nov 2017 (2017). https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
  25. 25.
    Intel. 2018 CES: Intel Advances Quantum and Neuromorphic Computing Research. Intel Newsroom, 08 Jan 2018 (2018). https://newsroom.intel.com/news/intel-advances-quantum-neuromorphic-computing-research/
  26. 26.
    N. Johansson, J.-A. Larsson, Realization of Shor’s algorithm at room temperature (2017). arXiv:1706.03215v1 [quant-ph] 10 Jun 2017. https://arxiv.org/pdf/1706.03215.pdf
  27. 27.
    H. Johnston, Shor’s algorithm is implemented using five trapped ions. PhysicsWorld.com, 04 March 2016 (2016). http://physicsworld.com/cws/article/news/2016/mar/04/shors-algorithm-is-implemented-using-five-trapped-ions#comments
  28. 28.
    R. Jozsa, Quantum algorithms and the fourier transform (1997). arXiv:quant-ph/9707033v1 17 Jul 1997. https://arxiv.org/pdf/quant-ph/9707033.pdf
  29. 29.
    J. Kelly, A Preview of Bristlecone. Google’s New Quantum Processor. Google AI Blog, 05 March 2018 (2018). https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
  30. 30.
    A. Kitaev, Quantum Measurements and the Abelian Stabiliser Problem. arXiv:quant-ph/9511026. 20 Nov 1995 (1995). https://arxiv.org/pdf/quant-ph/9511026.pdf
  31. 31.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961). (Reprinted in IBM Journal of Research and Development, Vol. 44, No. 1/2 January/March 2000, pp. 261–269.). http://www.research.ibm.com/journal/rd/441/landauerii.pdf
  32. 32.
    E. Lucero et al., Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719–723 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Monz et al., Realization of a scalable Shor algorithm. Science 351(6277), pp. 1068–1070 (2016). 04 March 2016Google Scholar
  34. 34.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000). [Errata at http://www.squint.org/qci/]
  35. 35.
    A. Peres, How the no-cloning theorem got its name (2002). arXiv:quant-ph/0205076v1, 14 May 2002. http://arxiv.org/PS_cache/quant-ph/pdf/0205/0205076v1.pdf. (As Asher reports, the title of the paper was contributed by John Wheeler.)
  36. 36.
    E. Rieffel, W. Polak, An introduction to quantum computing for non-physicists. ACM Comput. Surv. 32(3), 300–335 (2000). http://math.vassar.edu/Classes/280/papers/rieffelpolak.pdf; http://xxx.lanl.gov/abs/quant-ph/9809016
  37. 37.
    P.W. Shor, Algorithms for quantum computation: discrete log and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, Nov 1994. ftp://netlib.att.com/netlib/att/math/shorquantum.algorithms.ps.Z
  38. 38.
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26(5), 1484–1509 (1997). Preprint at http://www.arxiv.org/PS_cache/quant-ph/pdf/9508/9508027.pdf
  39. 39.
    J.A. Smolin, G. Smith, A. Vargo, Pretending to factor large numbers on a quantum computer, arXiv:1301.7007v1 [quant-ph] (2013). http://arxiv.org/abs/1301.7007
  40. 40.
    J.A. Smolin, G. Smith, A. Vargo, Oversimplifying quantum factoring. Nature 499, 163–165 (11 July 2013)Google Scholar
  41. 41.
    A. Tarantola, The quantum D-wave 2 is 3600 times faster than a super computer. GIZMODO. 04 March 2014 (2014). http://gizmodo.com/the-quantum-d-wave-2-is-3-600-times-faster-than-a-super-1532199369
  42. 42.
    L. Torlina et al., Interpreting attoclock measurements of tunnelling times. Nat. Phys. 11, 503–508 (2015). 25 May 2015. http://people.physics.anu.edu.au/~ask107/INSPEC/PNAS.pdf
  43. 43.
    A. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2 42, 230–265 (1936). http://www.turingarchive.org/viewer/?id=466&title=01bb (Errata (1937): 43, pp. 544–546. http://www.abelard.org/turpap2/tp2-ie.asp
  44. 44.
    L.M.K. Vandersypen, M. Steffen, M.H. Sherwood, C.S. Yannoni, G. Breyta, I.L. Chuang, Implementation of a three-quantum-bit search algorithm. Appl. Phys. Lett. 76(5), 646–648 (2000). 31 Jan, 2000. Available at https://arxiv.org/pdf/quant-ph/9910075.pdf
  45. 45.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001). 20–27 Dec 2001. http://www.fisica.uniud.it/~giannozz/Corsi/FisMod/Testi/nature.pdf
  46. 46.
    Vazirani, Kitaev’s factoring algorithm. Lecture 04, 04 Sept 1997 (1997). https://users.cs.duke.edu/~reif/courses/randlectures/UVnotes/lec18.pdf

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Acadinnet Education Services IndiaBangaloreIndia

Personalised recommendations