Advertisement

Treatment of Cardiac Autonomic Neuropathy

  • Sanjeev Kelkar
Chapter
  • 64 Downloads

Abstract

The treatment of cardiac autonomic neuropathy can be divided into controlling the abnormalities at the molecular cellular level or mitigating the extent of clinical aberrations induced by cardiac autonomic neuropathy by drugs and other measures. Controlling the pathophysiological/molecular abnormalities is necessary since these can, over a period of time, worsen and then accentuate the end organ damage leading to more complications, additional and expensive treatments, disastrous economic effects, or deterioration in quality of life, which are by no means less important. Today, there are many safe and effective medicines available. However, for maximum beneficial effects, knowledge of these and even more importantly that of cardiac tissue physiology and structural changes is necessary. This chapter explains these aspects.

References

  1. 1.
    Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant on cardiac autonomic neuropathy in NIDDM patients: a 4-month randomized controlled multicenter trial, Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997;20(3):369–73. [PMID: 9051389]. https://doi.org/10.2337/diacare.20.3.369.CrossRefGoogle Scholar
  2. 2.
    Manzella D, Barbieri M, Ragno E, Paolisso G. Chronic administration of pharmacologic doses of vitamin E improves the cardiac autonomic nervous system in patients with type 2 diabetes. Am J Clin Nutr. 2001;73:1052–7.CrossRefGoogle Scholar
  3. 3.
    Pop-Busui R, Stevens MJ, Raffel DM, et al. Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomized controlled trial. Diabetologia. 2013;56(8):1835–44.CrossRefGoogle Scholar
  4. 4.
    Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.CrossRefGoogle Scholar
  5. 5.
    Hu X, Li S, Yang G, Liu H, Boden G, Li L. Efficacy and safety of aldose Reductase inhibitor for the treatment of diabetic cardiovascular autonomic neuropathy: systematic review and meta-analysis. PLoS One. 2014;9(2):e87096.CrossRefGoogle Scholar
  6. 6.
    Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose Reductase inhibitor administration. Diabetes Care. 2004;27(2):448–54.CrossRefGoogle Scholar
  7. 7.
    PS Bidwai, Prof Cardiology, PGI Chandigarh, personal communication, 1996.Google Scholar
  8. 8.
    Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.CrossRefGoogle Scholar
  9. 9.
    Athyros VG, Didangelos TP, Karamitsos DT, Papageorgiou AA, Boudoulas H, Kontopoulos AG. Long-term effect of converting enzyme inhibition on circadian sympathetic and parasympathetic modulation in patients with diabetic autonomic neuropathy. Acta Cardiol. 1998;53(4):201–9.PubMedGoogle Scholar
  10. 10.
    Ziegler D, Low PA, Freeman R, Tritschler H, Vinik AI. Predictors of improvement and progression of diabetic polyneuropathy following treatment with α-lipoic acid for 4 years in the NATHAN 1 trial. J Diabetes Complicat. 2016;30(2):350–6.CrossRefGoogle Scholar
  11. 11.
    Baruch L, Anand I, Cohen IS, Ziesche S, Judd D, Cohn JN. Augmented short- and long-term hemodynamic and hormonal effects of an angiotensin receptor blocker added to angiotensin converting enzyme inhibitor therapy in patients with heart failure in type I diabetic patients with abnormal albuminuria. Circulation. 1999;99(20):2658–64.CrossRefGoogle Scholar
  12. 12.
    Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003;23(4):365–72.CrossRefGoogle Scholar
  13. 13.
    Hillis G, Woodward M, Rodgers A, et al. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia. 2012;55(5):1283–90.CrossRefGoogle Scholar
  14. 14.
    Ebbehøj E, Poulsen PL, Hansen KW, Knudsen ST, Mølgaard H, Mogensen CE. Effects on heart rate variability of metoprolol supplementary to ongoing ACE-inhibitor treatment in type I diabetic patients with abnormal albuminuria. Diabetologia. 2002;45(7):965–75.CrossRefGoogle Scholar
  15. 15.
    Lampert R, Ickovics JR, Viscoli CJ, Horwitz RI, Lee FA. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Beta-Blocker Heart Attack Trial. Am J Cardiol. 2003;91(2):137–14.CrossRefGoogle Scholar
  16. 16.
    Hermida RC, Ayala DE, Smolensky MH, Fernández JR, Mojón A, Portaluppi F. Sleep-time blood pressure: Unique sensitive prognostic marker of vascular risk and therapeutic target for prevention. Sleep Med Rev. 2017;33:17–27.  https://doi.org/10.1016/j.smrv.2016.04.001. Epub 2016 Apr 14.CrossRefPubMedGoogle Scholar
  17. 17.
    Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is Unmet. Diabetes Metab J. 2019;43:3–30. http://e-dmj.org.CrossRefGoogle Scholar
  18. 18.
    Alberto Verrotti, Giovanni Prezioso, Raffaella Scattoni and Francesco Chiarelli Autonomic neuropathy in diabetes mellitus, www.frontiersin.org December 2014 |Volume 5 | Article 205.
  19. 19.
    Freeman R. Clinical practice. Neurogenic orthostatic hypotension. N Engl J Med. 2008;358:615–24. [PMID: 18256396].  https://doi.org/10.1056/NEJMcp074189.CrossRefPubMedGoogle Scholar
  20. 20.
    Korkmaz ME, Müderrisoğlu H, Uluçam M, Ozin B, Dimitropoulos G. Effects of spironolactone on heart rate variability and left ventricular systolic function in severe ischemic heart failure. Am J Cardiol. 2000;86:649–53. [PMID: 10980217].  https://doi.org/10.1016/S0002-9149(00)01046-8.CrossRefPubMedGoogle Scholar
  21. 21.
    Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1- based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13:302–12. [PMID: 21205117].  https://doi.org/10.1111/j.1463-1326.2010.01345.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerasimos Dimitropoulos AA, Tahrani MJ. Stevens, cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes. 2014;5(1):17–39.CrossRefGoogle Scholar
  23. 23.
    Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World J Diabetes. 2015;6(1):80–91.CrossRefGoogle Scholar
  24. 24.
    Shibao C, Lipsitz LA, Biaggioni I. ASH position paper: evaluation and treatment of orthostatic hypotension. J Clin Hypertens (Greenwich). 2013;15(3):147–53.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sanjeev Kelkar
    • 1
  1. 1.Independent Health ResearcherPuneIndia

Personalised recommendations